Комплексные многообразия 6: когомологии Дольбо

Задача 6.1. Пусть M – компактная кэлерова поверхность (многообразие комплексной размерности 2). **Сигнатура** четырехмерного многообразия $\sigma(M)$ есть сигнатура формы пересечения на $H^2(M)$. Докажите, что $\sigma(M) = 2h^{2,0}(M) - h^{1,1} + 2$, где $h^{p,q}(M) := \dim H^{p,q}(M)$.

Задача 6.2. Пусть F — точная, голоморфная p-форма на p-мерном компактном комплексном многообразии. Докажите, что F=0.

Задача 6.3. Пусть M – компактная комплексная поверхность (не обязательно кэлерова). Докажите, что все голоморфные формы на M замкнуты.

Задача 6.4. Пусть (M,I,ω) – почти комплексное n-мерное эрмитово многообразие, а $D: C^{\infty}M \longrightarrow C^{\infty}M$ – дифференциальный оператор второго порядка на функциях, заданный формулой

$$D(f) = \frac{dd^c(f \wedge \omega^{n-1})}{\omega^n}.$$

Докажите, что D пропорционален оператору Лапласа.

Задача 6.5. Пусть $\eta-k$ -форма на вещественном многообразии, $L_{\eta}(t):=\eta \wedge t$, а $\Lambda_{\eta}:=(-1)^{\deg\eta}*L_{\eta}*-$ сопряженный оператор. Докажите, что Λ_{η} имеет порядок k как дифференциальный оператор на алгебре де Рама.