- 1. a) Show $J_{\mathbf{Q}(i)} = \mathbf{Q}(i)^{\times} \cdot (\mathbf{C}^{\times} \times \prod_{v \neq \infty} \mathbf{Z}[i]_{v}^{\times})$ and $\mathbf{Q}(i)^{\times} \cap (\mathbf{C}^{\times} \times \prod_{v \neq \infty} \mathbf{Z}[i]_{v}^{\times}) = \{\pm 1, \pm i\}$. This is an analogue of the formula $J_{\mathbf{Q}} = \mathbf{Q}^{\times} \cdot (\mathbf{R}^{\times} \times \prod_{p} \mathbf{Z}_{p}^{\times})$, where $\mathbf{Q}^{\times} \cap (\mathbf{R}^{\times} \times \prod_{p} \mathbf{Z}_{p}^{\times}) = \{\pm 1\}$.
 - b) Using the fact that $\mathbf{R}^{\times} = \{\pm 1\} \times \mathbf{R}_{>0}$, the formula $J_{\mathbf{Q}} = \mathbf{Q}^{\times} \cdot (\mathbf{R}^{\times} \times \prod_{p} \mathbf{Z}_{p}^{\times})$ can be refined to $J_{\mathbf{Q}} = \mathbf{Q}^{\times} \times (\mathbf{R}_{>0} \times \prod_{p} \mathbf{Z}_{p}^{\times})$. Let's try to generalize this to $J_{\mathbf{Q}(i)}$ using the decomposition for $J_{\mathbf{Q}(i)}$ in part a. Assuming there is a direct product decomposition $\mathbf{C}^{\times} = \{\pm 1, \pm i\} \times H$ for some subgroup H of \mathbf{C}^{\times} , show we can write $J_{\mathbf{Q}(i)} = \mathbf{Q}(i)^{\times} \times G$ for some group G.

Then show the assumption is wrong: $\mathbf{C}^{\times} \neq \{\pm 1, \pm i\} \times H$ for any subgroup H because \mathbf{C}^{\times} has no subgroup of index 4, and in fact \mathbf{C}^{\times} has no subgroup of any finite index greater than 1.

2. Let K be a number field. We want to show J_K admits a direct product decomposition which is compatible with the idelic norm. Choose an archimedean absolute value v_0 on K. Write down the indices (absolute values) of J_K so the v_0 -component comes first. Define an embedding $f_0: \mathbf{R}_{>0} \to J_K$, depending on whether the chosen v_0 is real or complex, by the formula

$$f_0(t) := \begin{cases} (t, 1, 1, 1, \dots), & \text{if } v_0 \text{ is real,} \\ (\sqrt{t}, 1, 1, 1, \dots), & \text{if } v_0 \text{ is complex.} \end{cases}$$

Show the multiplication map $M: \mathbf{R}_{>0} \times J_K^1 \to J_K$ where $M(t, \mathbf{x}) = f_0(t)\mathbf{x}$ is an isomorphism of topological groups and it fits into the commutative diagram below, where the maps along the top row are the standard inclusion and projection for subgroups of a direct product of groups and the maps along the bottom row are the inclusion of J_K^1 into J_K and the idelic norm on J_K .

$$1 \longrightarrow J_K^1 \longrightarrow \mathbf{R}_{>0} \times J_K^1 \longrightarrow \mathbf{R}_{>0} \longrightarrow 1$$

$$\downarrow \text{id.} \downarrow \qquad \qquad \downarrow \text{id.} \downarrow \qquad \qquad \downarrow \text{id.} \downarrow \qquad \downarrow$$

$$1 \longrightarrow J_K^1 \longrightarrow J_K \longrightarrow J_K \longrightarrow 1$$

(**Remark**. Unless K has exactly one archimedean absolute value, i.e., unless K is \mathbf{Q} or an imaginary quadratic field, the isomorphism $J_K \cong \mathbf{R}_{>0} \times J_K^1$ is not canonical since it depends on the choice of v_0 .)

- 3. Let G be a locally compact Hausdorff group and μ be a Haar measure on G.
 - a) If H is an open subgroup, show the restriction $\mu|_H$ is a Haar measure on H.
 - b) Give an example of G and a subgroup H which is not open such that $\mu|_H$ is not a Haar measure on H.
- 4. A Borel measure μ on a topological space which satisfies the two conditions

$$\mu(A) = \inf_{\text{open } U \supset A} \mu(U), \quad \mu(A) = \sup_{\text{cpt. } K \subset A} \mu(K),$$

for all Borel sets is called a *regular* measure. A Borel measure satisfying the first condition for all Borel sets A and the second condition when A is open or σ -finite is called a σ -regular measure, so by definition a Haar measure is σ -regular. This exercise gives an example of a Haar measure which is not regular.

Set $G = S^1 \times \mathbf{R}_d$, where \mathbf{R}_d is the real line with the discrete topology. This is a direct product of two locally compact (abelian) groups, so G is locally compact with the product topology. Think about G as an infinitely long vertical cylinder whose horizontal slices are "topologically independent" circles. Let μ be a Haar measure on G and set $A = \{1\} \times [0,1]$ (a vertical line segment of length 1).

- a) Show A is not open in G but it is closed.
- b) Show $\mu(K) = 0$ for all compact subsets K of A.
- c) Let U be any open set in G containing A. Therefore

$$U \supset \bigcup_{0 \le y \le 1} (1 - \varepsilon_y, 1 + \varepsilon_y) \times \{y\},$$

where $0 < \varepsilon_y < 1$ for all y. Show there's an $\varepsilon > 0$ such that $\varepsilon_y \ge \varepsilon$ for infinitely many y. (Hint: Assume otherwise. There are uncountably many y in [0, 1].)

d) By part c, $U \supset (1 - \varepsilon, 1 + \varepsilon) \times \{y\}$ for infinitely many $y \in [0, 1]$. Use this to show $\mu(U) = \infty$ and conclude from σ -regularity that $\mu(A) = \infty$ so μ is not regular. (Page 1 of Rudin's book "Fourier Analysis on Groups" says any Haar measure is regular. This is wrong.)