1. Let G be a locally compact group and  $\mu$  be a left-invariant Borel measure on G. (There are *no* regularity assumptions about the measure.) Show the following conditions are equivalent:

- a)  $\mu(K) < \infty$  for all compact subsets K of G,
- b)  $\mu(U_0) < \infty$  for some nonempty open subset  $U_0$  of G.

Therefore in the definition of a left Haar measure, instead of requiring all compact subsets have finite measure we can require there is some nonempty open subset with finite measure.

- 2. For each number field K, show  $\mathbf{A}_K$  and  $J_K$  are both  $\sigma$ -compact: each can be written as the union of countably many compact subsets.
- 3. Let  $\mu_{p^{\infty}} = \{z \in \mathbf{C} : z^{p^n} = 1 \text{ for some } n\}$ , but we view it as a discrete group, which is not its usual topology as a subset of  $\mathbf{C}$ . Prove  $\widehat{\mu_{p^{\infty}}} \cong \mathbf{Z}_p$  as topological groups using an explicit isomorphism. (Do not use Pontryagin duality!!).
- 4. a) In the group  $\mathbf{Q}/\mathbf{Z}$ , show the subgroup of elements of p-power order is isomorphic to  $\mathbf{Q}_p/\mathbf{Z}_p$  by an explicit isomorphism. (There is no topology here.)
  - b) The function  $r \mapsto e^{2\pi i r}$  induces an isomorphism of  $\mathbf{Q}/\mathbf{Z}$  with the group  $\mu$  of all roots of unity in  $\mathbf{C}$  as abstract groups. This isomorphism and part a gives us an isomorphism  $f \colon \mathbf{Q}_p/\mathbf{Z}_p \to \mu_{p^{\infty}}$  as abstract groups. Show the composite map

$$\mathbf{Q}_p \longrightarrow \mathbf{Q}_p/\mathbf{Z}_p \xrightarrow{f} \mu_{p^{\infty}} \hookrightarrow S^1$$

is precisely the standard character  $x \mapsto e^{2\pi i \{x\}_p}$  on  $\mathbf{Q}_p$ .

- 5. Let F be a finite extension of  $\mathbf{Q}_p$ .
  - a) Use a  $\mathbf{Q}_p$ -basis of F to show a topological group isomorphism  $\widehat{\mathbf{Q}}_p \cong \mathbf{Q}_p$  implies a topological group isomorphism  $\widehat{F} \cong F$ . This shows F is self-dual without using a "natural" isomorphism.

<sup>&</sup>lt;sup>1</sup>Since the quotient topology on  $\mathbf{Q}_p/\mathbf{Z}_p$  is discrete,  $\mathbf{Q}_p/\mathbf{Z}_p$  is the correct model for  $\mu_{p^{\infty}}$  as a topological group with the discrete topology.

b) For each  $y \in F$ , define  $\chi_y \colon F \to S^1$  by  $\chi_y(x) = e^{2\pi i \{\operatorname{Tr}_{F/\mathbf{Q}_p}(xy)\}_p}$ . Show  $y \mapsto \chi_y$  is a topological group isomorphism  $F \cong \widehat{F}$ , using part a. Here we are giving a "natural" self-duality of F.

(Hint: On any separable field extension L/K, every K-linear map  $L \to K$  has the form  $x \mapsto \operatorname{Tr}_{L/K}(xy)$  for a unique  $y \in L$ .)

c) Set  $F = \mathbf{Q}_3(\sqrt{6})$  and  $\chi(a + b\sqrt{6}) = e^{2\pi i \{a\}_3} e^{-2\pi i \{5b\}_3}$ . For which explicit number  $y \in F$  do we have  $\chi(x) = e^{2\pi i \{\text{Tr}_{F}/\mathbf{Q}_3(xy)\}_3}$  for all  $x \in F$ ?