
Le
ture 1Main De�nitions and Toy Geometries
This le
ture begins with the study of three toy examples of geometries(symmetries of the square, the 
ube, and the 
ir
le) and a model of thegeometry of the proje
tive plane. These examples are followed by the mainde�nition of this 
ourse: a geometry in the sense of Klein is a set with atransformation group a
ting on it. We then de�ne some useful general notionsrelated to transformation groups. Finally, we study the relationships (
alledmorphisms) between di�erent geometries, thus introdu
ing the 
ategory ofall geometries. The notions introdu
ed in this le
ture are illustrated by someproblems dealing with toy models of geometries that will be worked out inthe exer
ise 
lass.
§ 1.1. Symmetries of some �gures. (1) Symmetries of the square.Consider all the isometries of the unit square � = ABCD, i.e., all the
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SacSbdFig. 1.1. Symmetries of the squaredistan
e-preserving mappings of the square to itself. Denote by sH , sV , andsa
, sbd the line symmetries in the horizontal and verti
al mid-lines, and inthe diagonals AC; BD, respe
tively. Denote by r0, r1, r2, r3 the rotations



§1.1. Symmetries of some �gures 7about the 
enter of the square by 0, 90, 180, 270 degrees, respe
tively. Theseeight transformations are all 
alled symmetries of the square and denotedSym(�) = {r0; r1; r2; r3; sH ; sV ; sa
; sbd}:The set Sym(�) is 
losed under the operation of 
omposition (also 
alledmultipli
ation), i.e., the 
omposition of two symmetries is a symmetry. Forexample, sa
 ∗ sv = r1, sV ∗ sV = r0, r1 ∗ r2 = r3; here if we write, say, sa
 ∗r1, then sa
 is performed �rst, and r1 is performed se
ond (this is important,be
ause 
omposition is not 
ommutative).Other results appear in the following multipli
ation table:
∗ r0 r1 r2 r3 sH sV sa
 sbdr0 r0 r1 r2 r3 sH sV sa
 sbdr1 r1 r2 r3 r0 sa
 sbd sV sHr2 r2 r3 r0 r1 sV sH sbd sa
r3 r3 r0 r1 r2 sbd sa
 sH sVsH sH sbd sV sa
 r0 r2 r3 r1sV sV sa
 sH sbd r2 r0 r1 r3sa
 sa
 sH sbd sV r1 r3 r0 r2sbd sbd sV sa
 sH r3 r1 r2 r0Here (for example) the element sV at the interse
tion of the sixth 
olumnand the fourth row is sV = r2 ∗ sH , the 
omposition of r2 and sH in thatorder (�rst the transformation r2 is performed, then sV ). Composition isnon
ommutative.Obviously, 
omposition is asso
iative. The set Sym(�) 
ontains the iden-tity transformation r0 (also denoted id or 1). Any element X of Sym(�) hasan inverse X−1, i.e., an element su
h that X ∗X−1 = X−1 ∗X = 1.The set Sym(�) supplied with the 
omposition operation is 
alled thesymmetry group of the square.(2) Symmetries of the 
ube. LetI3 = {(x; y; z) ∈ R

3| − 1 ≤ x ≤ 1; −1 ≤ y ≤ 1; −1 ≤ z ≤ 1}be the unit 
ube. A symmetry of the 
ube is de�ned as any isometri
 trans-formation of I3. The 
omposition of two symmetries (of I3) is a symmetry.There is a total of 48 symmetries of the 
ube (list them!). The set of allsymmetries of the 
ube supplied with the 
omposition operation is 
alledthe symmetry group of the 
ube and is denoted by Sym(I3). This group isalso asso
iative, non
ommutative, has an identity, and all its elements haveinverses.



8 Le
ture 1. Main De�nitions and Toy Geometries(3) Symmetries of the 
ir
le. Let S1 := {(x; y) ∈ R
2| x2 + y2 = 1} be theunit 
ir
le. Denote by Sym(S1) the set of all isometries of the 
ir
le. Theelements of Sym(S1) are of two types: rotations ra, a ∈ [0; 2p), and axialsymmetries sa, a ∈ [0; 2p). The 
omposition of rotations is given by theformula ra ∗ rb = r(a+b) mod 2p:There is also a ni
e formula for the 
omposition of axial symmetries (�nd it!).The set of all isometries of the 
ir
le supplied with the 
omposition operationis 
alled the symmetry group of the 
ir
le and is denoted by Sym(S1). Thegroup Sym(S1) has an in�nite number of elements. As before, this groupis asso
iative, non
ommutative, has an identity, and all its elements haveinverses.(4) Ellipti
 plane geometry. Consider the set X = Ant(S2) of all pairsof diametri
ally opposed points on the sphere. (Thus elements of X are notordinary points, but pairs of points.) Then X = Ant(S2), the set of diamet-ri
ally opposed points on S2 under the a
tion of the orthogonal group O(3)given by g : (x; −x) 7→ (g(x); g(−x)) (whi
h is well de�ned be
ause g(−x) =

−g(x)) is 
alled ellipti
 plane geometry. (Readers not familiar with the notionof orthogonal group are referred to the Appendix.)The ellipti
 \plane" (the set X) 
ontains another 
lassi
al geometri
 ob-je
t, namely the M�obius band. Can you �nd it there?
§1.2. Main de�nitions. Let X be a set (�nite or in�nite) of arbitraryelements 
alled points. By de�nition, a transformation group G a
ting on X isa (nonempty) set G of bije
tions of X supplied with a 
omposition operationdenoted by ∗ and satisfying the following 
onditions:(i) G is 
losed under 
omposition, i.e., for any transformations g; g′ ∈ Gthe 
omposition g ∗ g′ belongs to G;(ii) G is 
losed under taking inverses, i.e., for any transformation g ∈ G,its inverse g−1 belongs to G.These 
onditions immediately imply that G 
ontains the identity trans-formation. Indeed, take any g ∈ G; by (ii), g−1 ∈ G; by (i), g−1 ∗ g ∈ G;but g−1 ∗ g =id (by de�nition of inverse element). Note also that 
omposi-tion in G is asso
iative (be
ause the 
omposition of mappings, in parti
ulartransformations, is always asso
iative).If x ∈X and g ∈ G, then by xg we denote the image of the point x underthe transformation g. (The more usual notation g(x) is not 
onvenient: wehave x(g ∗ h) = (xg)h, but (g ∗ h)(x) = h(g(x)).)



§1.3. Order, generators, subgroups 9A mapping of transformation groups a : G → H is 
alled a homomor-phism if a respe
ts the produ
t stru
ture, i.e., a(g1 ∗ g2) = a(g1) ∗ a(g2)for all g1; g2 ∈ G ; a homomorphism a is a monomorphism (an epimorphism)if a is inje
tive (surje
tive, respe
tively).Two transformation groups G and H a
ting on two sets X and Y (X =Y is not forbidden) are 
alled isomorphi
 if there exists a bije
tive mappingf : G → H su
h that f(g ∗ g′) = f(g) ∗ f(g′) for all g; g′ ∈ G.In this 
ourse, a pair (X : G), where G is a transformation group a
tingon X , will be 
alled the geometry (in the sense of Klein) of G on X . Thefour examples in §2 de�ne the geometry of the square, the geometry of the
ube, the geometry of the 
ir
le, and the geometry of the proje
tive plane.Another example is the set Bij(X) of all bije
tions of any set X . Note thatBij(X) 
ontains any transformation group G a
ting on X .If X is a subset of R
n and (X : G) is a geometry, then a subset F ⊂ X is
alled a fundamental region or domain of this geometry (or of the a
tion ofG on X) if

• F is open;
• F ⋂ g(F ) = ∅ for any g ∈ G (ex
ept g =id).;
• X = ⋃g∈GClos(g(F )), where Clos(:) denotes the 
losure of a set.For example, in the 
ase of the square, a fundamental domain of the a
tionof Sym(�) is the triangle AOM , where O is the 
enter of the square and Mis the midpoint of side AB; of 
ourse Sym(�) has many other fundamentalregions. Thus fundamental regions are not ne
essarily unique. Moreover,fundamental regions don't always exist: for instan
e, Sym(S1) (and other\
ontinuous" geometries) do not have any fundamental regions.
§1.3. Order, generators, subgroups. By de�nition, the order of anelement g of a group G a
ting on a set X is the smallest natural number ksu
h that gk = g ∗ g ∗ · · · ∗ g

︸ ︷︷ ︸k = 1;notation: ord(g). The order of the group G itself is the number of its elementsand is denoted by |G|.For example, | Sym(�)| = 8, ord(r1) = 4, ord(sB) = 2, | Sym(S1)| = ∞,and Sym(S1) 
ontains elements of in�nite order and elements of any �niteorder (�nd an element of order 17).



10 Le
ture 1. Main De�nitions and Toy GeometriesSuppose G is a transformation group a
ting on some set X . Then a sub-set H of G is 
alled a subgroup of G if H is 
losed with respe
t to 
omposition(i.e., h; h′ ∈H ⇒ h∗h′ ∈H) and 
losed with respe
t to inverse elements (i.e.,h ∈ H ⇒ h−1 ∈ H)). Any subgroup H ⊂ G 
ontains the identity element 1(prove this!). For example, the set of rotationsRot(�) = {r0; r1; r2; r3} ⊂ Sym(�)is a subgroup (of order 4) of the symmetry group of the square, but the setof {sH ; sV ; sa
; sbd} is not a subgroup (why?). Are there any subgroups oforder 2 in Sym(�)?Suppose that G is a transformation group (�nite or in�nite); a family
{g1; : : : ; gk} ⊂G is (by de�nition) a set of generators of G if any g ∈G is the
omposition of some elements of this family. For example, if a is an elementof order 5 in some transformation group G, then {a; a2; a3; a4; a5 =id} is asubgroup of G generated by the one-element set {a}. Another example: thetwo elements r1 and sH generate the group Sym(�) (
he
k this!).

§ 1.4. The 
ategory of geometries. Category theory, or \abstra
tnonsense" is a very general formal algebrai
 language; it will not be studiedor used in this 
ourse. However, you should know that a 
ategory is a 
lassof \obje
ts" and \morphisms" satisfying 
ertain axioms; for example, the
ategory of sets is the 
lass of sets and their mappings, the 
ategory of groupsis the 
lass of groups and their homomorphisms.Similarly, the 
ategory of geometries is the 
lass of all geometries (in thesense of Klein, see §1.2) and their morphisms; by de�nition, a morphism (orequivariant map) of a geometry (X :G) to a geometry (Y :H) is a 
orrespon-den
e between them respe
ting their geometri
 stru
ture (the group a
tion);more pre
isely, a morphism is a pair (f; a), where f : X → Y is a mappingand a : G→H is a homomorphism su
h that f(xg) = (f(x))(a(g)) for all x ∈X and g ∈ G. A morphism (f; a) of geometries is an embedding if f and aare inje
tive, and then (X : G) and (f(X) : a(G)) is 
alled a subgeometry of(Y : H); it is a surje
tion if f and a are surje
tive.Two geometries (X : G) and (Y : H) are 
alled isomorphi
, if there exista bije
tion f : X → Y and an isomorphism a : G → H su
h thatf(xg) = (f(x))(a(g)) for all x ∈ X and all g ∈ G:This is a typi
al de�nition in the style of algebrai
 \abstra
t nonsense". Itis so trivial and so tautologi
al that it is almost impossible to understand.



§1.5. Some philosophi
al remarks 11To understand it, try to prove that a(1) = 1, if the 
orresponding geometriesare equivalent.
§ 1.5. Some philosophi
al remarks. The examples in §1.1 (square,
ube, 
ir
le) were taken from elementary s
hool geometry. This was done tomotivate the 
hoi
e of the a
tion of the 
orresponding transformation group.Now, in the example of the 
ube, let us forget s
hool geometry: instead ofthe 
ube I3 with its verti
es, edges, fa
es, angles, interior points and otherstru
ture, 
onsider the abstra
t set of points {A; B; C; D; A′; B′; C ′; D′} andde�ne the \isometries" of the \
ube" as a set of 48 bije
tions; for example,the \rotation by 270◦" about the verti
al axis is the bije
tionA 7→ B; B 7→ C; C 7→ D; D 7→ A; A′ 7→ B′; B′ 7→ C ′; D′ 7→ A′;and the 47 other \isometries" are de�ned similarly. Then (still forgettings
hool geometry), we 
an de�ne verti
es, edges (AB is an edge, but AC ′is not), fa
es, prove that all edges are 
ongruent, all fa
es are 
ongruent,the \
ube" 
an \rotate" about ea
h vertex, et
.). The result is the intrinsi
geometry of the set of verti
es of the 
ube.Above we 
alled Q(3) := Sym(I3) the geometry of the 
ube; Q(3)) is notthe same geometry as the geometry of the vertex set of the 
ubeQ(0) := Sym(A; B; C; D; A′; B′; C ′; D′):Of 
ourse the group G a
ting in these two geometries is the same group oforder 48, but it a
ts on two di�erent sets : the (in�nite) set of points of the
ube I3 and the (�nite) set of its 8 verti
es A; B; C; D; A′; B′; C ′; D′. Thusthe algebra of the two situations is the same, but the geometry is di�erent.The geometry of the solid 
ube I3 is of 
ourse mu
h ri
her than the geometryof the vertex set of the 
ube. For example, we 
an de�ne line segments insidethe 
ube, establish their 
ongruen
e, et
. (Note that segments of the samelength inside the 
ube are not ne
essarily 
ongruent in the geometry of the
ube!)Another example: the set of three points {A; B; C} with two transfor-mations, namely the identity and the \symmetry"A 7→ A; B 7→ C; C 7→ B:What should this geometry be 
alled? Yes, it should be 
alled the intrinsi
geometry of the vertex set of the isos
eles triangle (why?).



12 Le
ture 1. Main De�nitions and Toy Geometries
§1.6. Problems.1.1. List all the elements (indi
ating their orders) of the symmetry group(i.e., isometry group) of the equilateral triangle. List all its subgroups. Howmany elements are there in the group of motions (i.e., orientation-preservingisometries) of the equilateral triangle.1.2. Answer the same questions as in Problem 1.1 for(a) the regular n-gon (i.e., the regular polygon of n sides); 
onsider the
ases of odd and even n separately;(b) the regular tetrahedron;(
) the 
ube;(e)* the dode
ahedron;(f)* the i
osahedron;(g) the regular pyramid with four lateral fa
es.1.3. Embed the geometry of the square into the geometry of the 
ube,and the geometry of the 
ir
le into the geometry of the sphere.1.4. For what n and m 
an the geometry of the regular n-gon be embed-ded in the geometry of the regular m-gon?1.5. Let G be the symmetry group of the regular tetrahedron. Find allits subgroups of order 2 and des
ribe their a
tion geometri
ally.1.6. Let G+ be the group of motions of the 
ube. Indi
ate four subsetsof the 
ube on whi
h G+ a
ts by all possible permutations.1.7. Let G be the symmetry group of the dode
ahedron. Indi
ate subsetsof the dode
ahedron on whi
h G a
ts by all possible permutations.1.8. Find a minimal system of generators for the symmetry group of(a) the regular tetrahedron;(b) the 
ube.1.9. Embed the geometry of the 
ube in the geometry of the i
osahedron.How many su
h (di�erent) embeddings are there?1.10. Des
ribe fundamental domains of the symmetry group of(a) the 
ube;(b) the i
osahedron;(
) the regular tetrahedron.1.11. Des
ribe the M�obius band as a subset of RP 2.



Le
ture 2Abstra
t Groups and Group Presentations
In order to study geometries more 
ompli
ated than the toy models withwhi
h we played in the previous le
ture, we need to know mu
h more aboutgroup theory. A

ordingly, in this le
ture we study the relevant fa
ts of thistheory (whi
h will 
onstantly be used in what follows).The theory of transformation groups began in the work of several greatmathemati
ians: Lagrange, Abel, Galois, Sophus Lie, Felix Klein, �Elie Car-tan, Herman Weyl. At the beginning of the 20th 
entury, algebraists de
idedto generalize this theory to the formal theory abstra
t groups. In this le
ture,we will study this formal theory and learn that it is not a generalizationat all: Cayley's Theorem says that all abstra
t groups are a
tually trans-formation groups. We will also learn that two important 
lasses of groups(free groups and permutation groups) have 
ertain universality properties.Finally, we will �nd out how to present groups by means of generators andrelations; this allows to repla
e 
omputations with groups by games withwords.
§2.1. Abstra
t groups. By de�nition, an (abstra
t) group is a set Gof arbitrary elements supplied with a binary operation ∗ (usually 
alled mul-tipli
ation) if it obeys the following rules:
• (neutral element axiom) there exists a unique element e ∈ G su
h thatg ∗ e = e ∗ g = g for any g ∈ G;
• (inverse element axiom) for any g ∈ G there exists a unique elementg−1 ∈ G, 
alled inverse to g, su
h that g ∗ g−1 = g−1 ∗ g = e;
• (asso
iativity axiom) (g ∗ h) ∗ k = g ∗ (h ∗ k) for all g; h; k ∈ G.A group (G; ∗) is 
alled 
ommutative or Abelian if g ∗ h = h ∗ g for allg; h ∈ G (in that 
ase the operation is usually 
alled a sum and the inverseelement is usually denoted by −g instead of g−1). Let (G; ∗), (H; ◦) begroups, f : G → H a mapping; f is 
alled a homomorphism (or a morphism



14 Le
ture 2. Abstra
t Groups and Group Presentationsof groups) if it preserves the operations, i.e., f(g1 ∗ g2) = f(g1) ◦ f(g2)); ahomomorphism f is a monomorphism (respe
tively, an epimorphism or anisomorphism) if the mapping f is inje
tive (resp., surje
tive or bije
tive).From the point of view of abstra
t algebra, isomorphi
 groups are identi
al.The notions of order (of elements of a group and of the group itself) andof generator for abstra
t groups are de�ned exa
tly like for transformationgroups (see §1.3).Examples. Any transformation group is a group; the following groupsare standard (you should know them):
• Zm, residues modulo m;
• Sn, permutations on n obje
ts;
• F (a1; : : : ; ak), the free group on k generators;
• GL(n), nondegenerate linear operators on R

n;
• O(n) and SO(n), orthogonal and positive orthogonal operators on R

n.From now on we omit the group operation symbol, i.e., we write gh insteadof g ∗ h.A subgroup H of a group G is a subset of G whi
h satis�es the groupaxioms. A subgroup H ⊂ G is normal if gHg−1 = H for any g ∈ G. If His a subgroup of G, then a 
oset Hg ⊂ G, for some g ∈ G, is the set of allelements of the form gh for h ∈ H . Two 
osets either do not interse
t or
oin
ide. If H is normal, there is a well-de�ned operation in the family of
osets: the produ
t of two 
osets is the 
oset 
ontaining the produ
t of anytwo elements of these 
osets; the family of 
osets supplied with this produ
toperation satis�es the group axioms; it is 
alled the quotient group of G by Hand is denoted by G=H .Example. in the additive group of integers (Z; +), elements of the form5k, k ∈ Z, 
onstitute a normal subgroup, denoted 5Z; the 
orrespondingquotient group Z=5Z is isomorphi
 to the group Z5.
§2.2. The Lagrange theorem. The elementary theorem proved belowis the �rst stru
ture theorem about abstra
t groups. It was proved (fortransformation groups) almost two 
enturies ago by Lagrange.Theorem 2.1. If H is a subgroup of a �nite group G, then the orderof H divides the order of G.P r o o f. The 
osets of H in G form a partition of the set of elementsof G and all have the same number of elements as H . �Corollary. Any group G of prime order p is isomorphi
 to Zp.



§2.3. Free groups and permutations 15P r o o f. Let g ∈ G, g 6= e. Let m be the smallest positive integer su
hthat gm = e. Then H := {e; g; g2; : : : ; gm−1} is a subgroup of G (why?) andby Theorem 1, m divides p. This is impossible unless m = p, but then H =G is obviously isomorphi
 to Zp. �

§2.3. Free groups and permutations. In this se
tion, we study two
lasses of groups: the free groups (whi
h have the \least stru
ture") and thepermutation groups (whi
h have the \most stru
ture").Let F := {f1; : : : ; fk} be a set of symbols. Then the set of formal symbols(
alled letters) A := {e; f1; : : : ; fk; f−11 ; : : : ; f−1k }will be our alphabet. A string of letters from our alphabet will be 
alled aword. Two words w1 and w2 are 
alled equivalent, if one 
an be obtainedfrom the other by using the following trivial relations fif−1i = f−1i fi = e forany i and fe = ef = f for any f ∈ A; for examplef1f−13 ∼ f1f−13 e ∼ f1f−13 f2f−12 ∼ f1f−13 f2ef−12 :The produ
t of two words is de�ned as their 
on
atenation (i.e., writing thenone after the other). The free group with generators f1; : : : ; fk is de�ned asthe set of equivalen
e 
lasses of words supplied with the produ
t (
on
atena-tion) operation and is denoted by F = F[f1; : : : ; fk℄.For example, F[f ℄ is isomorphi
 to (Z; +), while F[f1; f2℄ is not 
ommu-tative.The permutation group on n obje
ts is the family of all bije
tions of theset {1; 2; : : : ; n} supplied with the operation of 
omposition; it is denotedby Sn. It 
onsists of n! elements denoted by [i1; : : : ; in℄, where ik := b(k)and b is the bije
tion de�ning the given element.Free groups and permutation groups have important \universality" prop-erties.Theorem 2.2. (i) For any �nite group G there exists a monomorphismof G into Sn for some n.(ii) For any group G with a �nite number of generators there exists anepimorphism of Sn (for some n ) onto G.S k e t 
 h o f t h e p r o o f. (i) Let |G| = n and g0 ∈ G; then the map-ping G ∋ g 7→ gg0 ∈ G



16 Le
ture 2. Abstra
t Groups and Group Presentationsis a bije
tion of the n-element set G; this bije
tion 
an be identi�ed with anelement of Sn. Thus we have obtained a mapping G → Sn; it is not diÆ
ultto prove that this mapping is a monomorphism.(ii) Let g1; : : : ; gn be a set of generators of G. Then it is not diÆ
ult toprove that the mappinga : F[f1; : : : ; fn℄ → G given by a(fi) = gi; i = 1; : : : ; n;is an epimorphism. �

§ 2.4. Group presentations. A presentation of a group is a way ofde�ning the group by means of equations (
alled de�ning relations) in thegenerators of the group. The formal de�nition is the following. An expres-sion of the form G = 〈g1; : : : ; gn : R1 = · · · = Rk = 1〉, where R1; : : : Rk arewords (relators) in the alphabet A = {g1; : : : ; gng−11 ; : : : ; g−1n }, is 
alled apresentation of the group G; the group G is de�ned by its presentation asthe quotient group
F[g1; : : : ; gn℄={R1; : : : ; Rk};where {R1; : : : ; Rk} is the minimal (by in
lusion) normal subgroup of thegroup F[g1; : : : ; gn℄ 
ontaining the elements (relators) R1; : : : ; Rk.This formal de�nition is diÆ
ult to understand. But the notion of grouppresentation is simple. It means that elements of G are words in the alphabetA de�ned up to the trivial relations (re
all § 2.3 above) and all the relationsR1 = e; : : : ; Rk = e; the produ
t is 
on
atenation.Here are some examples:

• Zm = 〈a : am〉 ;
• F[g1; : : : ; gn℄ = 〈g1; : : : ; gn : 〉 ;
• S3 = 〈s1; s2; s3 : s21; s22; s23; s1s2s1s−12 s−11 s−12 ; s1s2s1s−12 s−11 s−12 〉.More details and examples will be given in the exer
ise 
lass.
§2.5. Cayley's theorem. The following theorem (due to Cayley) showsthat the notion of abstra
t group is not a real generalization: all groups arein fa
t transformation groups!Theorem 2.3. Any group G is a transformation group a
ting on theset G by right multipli
ation: g 7→ gg0 for any g0 ∈ G.The proof is a straightforward veri�
ation.Corollary. Any group is a geometry in the sense of Klein (i.e., in thesense of formal de�nition given in §1.2).This 
orollary shows that the de�nition of geometry given in § 1.2 is of
ourse too general; additional restri
tions on the set of elements and the



§2.6. Problems 17transformation group are needed to obtain an obje
t about whi
h most math-emati
ians will agree that it is a bona �de geometry. However, there seems tobe no formal agreement on this subje
t, so that the \additional restri
tions"to be imposed are a matter of opinion, and we will not spe
ify any (at leaston the formal level) in this 
ourse.
§2.6. Problems.2.1. Des
ribe all the �nite groups of order 6 or less and supply ea
h witha geometri
 interpretation.2.2. Des
ribe all the normal subgroups and the 
orresponding quotientgroups of(a) the equilateral triangle;(b) the motion group of the regular tetrahedron.2.3. Let G be the motion group of the plane, P its subgroup of paralleltranslations, and R its subgroup of rotations with �xed 
enter O. Prove thatthe subgroup P is normal and the quotient group G=P is isomorphi
 to R.2.4. Prove that if the order of a subgroup is equal to half the order ofthe group (i.e., the subgroup is of index 2), then the subgroup is normal.2.5. Find all the orbits and stabilizers of all the points of the group Ggenerated by the permutation(5 8 3 9 4 10 6 2 1 7) ∈ S10a
ting on the set {1; 2; 3; 4; 5; 6; 7; 8; 9; 10}.2.6. Find the maximal order of elements in the group (a) S5; (b) S13.2.7. Find the least natural number n su
h that the group S13 has noelements of order n.2.8. Prove that the permutation group Sn is generated by the transposi-tion (12) and the 
y
le (1 2 : : : n).2.9. Present the symmetry group of the equilateral triangle by generatorsand relations in two di�erent ways.2.10. How many homomorphisms of the free group in two generators intothe permutation group S3 are there? How many of them are epimorphisms?2.11. Prove that the group presented as follows

〈a; b |a2 = bn = a−1bab = 1〉is isomorphi
 to the dihedral group Dn (de�ned in Le
ture 3).2.12. Show that if the elements a and b of a group satisfy the relationsa5 = b3 = 1 and b−1ab = a2, then a = 1.



Le
ture 3Finite Subgroups of the Isometry Groupof the Sphere and the Platoni
 Bodies
This le
ture is devoted to the 
lassi�
ation of regular polyhedra (the�ve \Platoni
 bodies", see Figure 3.1), whose aestheti
 and s
ienti�
 ap-

Fig. 3.1. The �ve Platoni
 bodiespeal has not weakened over the 
enturies, attra
ting, from the philosophi
aland artisti
 point of view, su
h great thinkers as Plato and Leonardo daVin
i (see his models of the dode
ahedron and the i
osahedron in Fig. 3.2),the astronomer Kepler (planetary orbits, see his weird engraving of ins
ribedPlatoni
 bodies, supposedly indi
ating the distan
es from the planets to theSun, Fig. 3.3), mathemati
ians and physi
ists su
h as Pythagoras and Heisen-berg (the \singing spheres").The proof that we give here is essentially group theoreti
 (we redu
e the
lassi�
ation problem of regular polyhedra to 
lassifying �nite subgroups ofthe orthogonal group O(3), or, whi
h is the same thing, the isometry groupof the sphere S
2). This proof is quite natural and more geometri
, in a deepersense, than the tedious and e
le
ti
 spa
e geometry proof known from an
ienttimes. Thus ea
h of the Platoni
 bodies is a geometry in the sense of Kleinwith its own �nite transformation group. The proof also serves as a beautifulillustration of the idea that transformation groups are the formalization ofthe idea of symmetry.
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Fig. 3.2. Da Vin
i engravings
§3.1. Orbits, stabilizers, 
lass formula. Let (X : G) be some trans-formation group a
ting on a set X and let x ∈ X . Then the orbit of x isde�ned as Orb(x) := {g(x)|g ∈ G} ⊂ X;and the stabilizer of x isSt(x) := {g ∈ G|g(x) = x} ⊂ G:For example, if X =R

2 and G is the rotation group of the plane about theorigin, then the set of orbits 
onsists of the origin and all 
on
entri
 
ir
les
entered at the origin; the stabilizer of the origin is the whole group G, andthe stabilizers of all the other points of R
2 are trivial (i.e., they 
onsist of oneelement| the identity id∈ G).Suppose (X : G) is an a
tion of a �nite transformation group on a �niteset. Then the number of points of G is (obviously) given by

|G| = |Orb(x)| × |St(x)|
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 Bodies

Fig. 3.3. Kepler's theory of planetary orbitsfor any x ∈ X . Now let A ⊂ X be a set that interse
ts ea
h orbit at exa
tlyone point. Then the number of points of X is given by the formula
|X | = ∑x∈A |G|

|St(x)| ;
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alled the 
lass formula. This formula, just as the previous one, followsimmediately from de�nitions.
§3.2. Finite subgroups of SO(3). Consider the geometry (X : G) ofthe two-dimensional sphereX = S

2 := {(x; y; z) ∈ R
2 |x2 + y2 + z2 = 1}de�ned by the a
tion of its isometry group G = SymS2. (In linear algebra
ourses this group G is de�ned in a di�erent (but equivalent) way and is usu-ally denoted by O(3).) The group G = O(3) 
ontains the rotation subgroupG+ = Rot(S2): ea
h element of G+ is a rotation of the sphere about someaxis passing through the origin by some angle f, 0≤ f< 2p. In linear algebra
ourses this group G+ is de�ned in a di�erent (but equivalent) way and isusually denoted by SO(3).Our goal is to �nd the �nite subgroups of G+ = SO(3) and of G = O(3).We begin with some examples.(i) The monohedral group Zn for n ≥ 2 (n elements); its elements arerotations about the verti
al axis (i.e., the z-axis) by angles of 2kp=n, wherek = 0; : : : ; n− 1. (N.B.: the term monohedral is not standard.)(ii) The dihedral group Dn for some n ≥ 1 (2n elements); the group Dn isthe isometry group of the regular n-gon (lying in the horizontal plane Oxyand ins
ribed in the sphere S

2 ); Dn 
onsists of n rotations (by angles of2kp=n, k = 0; 1; : : : ; n− 1) and n symmetries with respe
t to the horizontallines passing through the 
enter, the verti
es, and the midpoints of the sides(be 
areful: these lines are di�erent when n is even or odd| look at the�gure!). Note that D(n) ⊂ SO(3) and the symmetries of D(n) with respe
tto the horizontal lines are a
tually rotations in spa
e (about these lines byangles of 180◦).
2kπ

5

π

π

π

2kπ

6

Fig. 3.4. The dihedral group Dn for n = 5 and n = 6



22 Le
ture 3. Finite Groups and the Platoni
 Bodies(iii) The isometry group of the regular tetrahedron ins
ribed in the sphere
S
2 (24 elements), denoted by Sym(�3) (we will see later that Sym(�3)is isomorphi
 to the permutation group S4) and its (12 element) rotation

2π

3
, 4π

3

π

Fig. 3.5. Sym(�3)
subgroup:Rot(�3) = Sym+(�3) ⊂ Sym(�3);
onsisting of 8 rotations about 4 axes (
ontainingone vertex) by angles of 2p=3 and 4p=3, three rota-tions by p (des
ribe them!) and the identity.(iv) The isometry group Sym(I3) of the 
ube (48elements) and its rotation subgroup (
onsisting of(24 elements)):Rot(I3) = Sym+(I3) ⊂ Sym(I3)(see the previous le
ture). If we join the 
enter of ea
h of the 6 fa
es of the
ube by segments to the four neighboring 
enters, we obtain the 
ar
ass ofthe o
tahedron dual to the 
ube (see Fig. 3.6 (a). The o
tahedron has 6verti
es and 8 triangular fa
es; its isometry group is obviously the same asthat of the 
ube.(v) The isometry group Sym(Dod) of the dode
ahedron (120 elements)and its (60 element) rotation subgroupRot(Dod) = Sym+(Dod) ⊂ Sym(Dod):The dode
ahedron is the (regular) polyhedron (ins
ribed in the sphere S

2)with 12 fa
es (
ongruent regular pentagons), 30 edges, and 20 verti
es (seeFig. 3.6 (b)). The existen
e of su
h a polyhedron will be proved at theend of this le
ture. Joining the 
enters of the fa
es of the dode
ahedron
(a) (b)Fig. 3.6. Dual pairs 
ube-o
tahedron and dode
ahedron-i
osahedron



§3.2. Finite subgroups of SO(3) 23having a 
ommon edge (see Fig. 3.6 (b) again, as well as Fig. 3.2), we get thei
osahedron dual to the dode
ahedron, whi
h has the same transformationgroup.The following theorem states that there are no other �nite subgroups.Theorem 3.1. Any �nite subgroup of G+ = Sym+(S2) = SO(3) is iso-morphi
 to one of the following groups :(i) Zn, (ii) Dn, (iii) Rot(�3), (iv) Sym+(I3), (v) Sym+(Dod).S k e t 
 h o f t h e p r o o f. It is known (see the linear algebra 
ourseand the Appendix) that any element of SO(3) (and hen
e of G+) is a rotationabout a diameter of the sphere S
2 and has two �xed points (the ends of thediameter). Let F be the set of �xed points of the group G+:F = {x ∈ S

2 | ∃ g ∈ G+ − id; g(x) = x}:Consider the (�nite) geometry (F : G+) and let A be a set 
ontaining onepoint in ea
h orbit of G+ in F . First we 
laim that the number of points inF is |F | = |A||G+| − 2(|G+| − 1). This will be proved in the exer
ise 
lass.Using the 
lass formula from §3.1, we 
an write |F |=∑x∈A |G+|=v(x), wherev(x) = |St(x)|. Note that v(x) is the order of the rotation subgroup of G+determined by the diameter 
ontaining x. Repla
ing |F | by its value foundabove and dividing by |G+|, we obtain2− 2
|G+| = ∑x∈A(1− 1v(x)) :The left-hand side of this formula is less than 2; hen
e the sum in the right-hand side 
an 
ontain only 2 or 3 summands; therefore there 
an be only2 or 3 orbits. Denote by x1; x2; x3 points of these three orbits; denote byv1; v2; v3 the values of v(x) (in nonde
reasing order). It is not diÆ
ult to seethat only the following 
ases are allowed by the formula above:v1 v2 v3 |G+|
ase 1 n n − n
ase 2 2 2 n 2n
ase 3 2 3 3 12
ase 4 2 3 4 24
ase 5 2 3 5 60The �ve 
ases 
orrespond to (i)|(v), respe
tively. �



24 Le
ture 3. Finite Groups and the Platoni
 Bodies(For the details of the proof, see, for example, the book G�eom�etrie byMar
el Berger, pp. 102|108).Corollary. Any �nite subgroup of G = Sym(S2) is isomorphi
 to one ofthe following groups :(i) Zn, (ii) Dn, (iii) S4, (iv) Sym(I3), (v) Sym(Dod).
§3.3. The �ve regular polyhedra. A regular polyhedron is de�ned asa 
onvex polyhedron (ins
ribed in the sphere S

2) su
h that(i) all its fa
es are 
ongruent regular polygons of k sides for some k > 2;(ii) the endpoints of all the edges issuing from ea
h vertex lie in one planeand form a regular l-gon for some l > 2.Theorem 3.2. There are exa
tly �ve di�erent regular polyhedra: thetetrahedron, the 
ube, the o
tahedron, the dode
ahedron, and the i
osahedron.P r o o f. This theorem follows from the Corollary to Theorem 3.1. In-deed, the de�nition implies that the isometry group of a regular polyhedron is�nite and therefore must be one of the groups listed in Theorem 3.1. The two\series" (i) and (ii) do not give any (nondegenerate) polyhedra (why?). In
ase (iii), we get the tetrahedron (be
ause its symmetry group is isomorphi
to the permutation group S4). In 
ase (iv), we get the 
ube and its dual, theo
tahedron, in 
ase (v), the dode
ahedron and its dual, the i
osahedron. �Thus we obtain �ve geometries with three di�erent group a
tions (tetrahe-dron, 
ube ∼ o
tahedron, dode
ahedron ∼ i
osahedron). To understand thegroup a
tions in these geometries, it is useful to 
onstru
t their fundamentalregions.
§3.4. The �ve Kepler 
ubes. Kepler observed that the 
ube 
an beins
ribed in �ve di�erent ways into the dode
ahedron. Here we will performthe opposite 
onstru
tion: starting from the 
ube, we will 
onstru
t a do-de
ahedron 
ir
ums
ribed to the 
ube. This will prove the existen
e of thedode
ahedron.Consider two 
opies ABCDE and A′B′C ′D′E′ of the regular pentagonwith diagonals of length 1. Pla
e these pentagons in the plane of the unitsquare PQRS so that the diagonals BE and B′E′ are identi�ed with PS andQR, respe
tively, and CD is parallel to C ′D′. By rotating the pentagons inspa
e about PS and QR, identify the sides CD and C ′D′ above the squarePQRS.Now suppose PQRS is the top fa
e of the unit 
ube PQRSP ′Q′R′S′.Pla
e two more pentagons on the fa
e SRR′S′ of the 
ube the same way asbefore, so that their parallel sides are parallel to SR. Now rotate these



§3.5. Problems 25two pentagons until these parallel sides are identi�ed. Then it is nothard to prove that the upper endpoint of the identi�ed segment will 
o-in
ide with one of the endpoints of the 
ommon (identi�ed) segment ofthe �rst two pentagons. Perform similar 
onstru
tions on the other fa
esof the 
ube. The polyhedron thus obtained will be the dode
ahedron.
A′

E′
=R

B′
=Q

D′

C′

A

E=S

B=P

D

C

P

Q

R

S

C=C′

D=D′

Fig. 3.7. Constru
ting the dode
ahedron
§3.5. Problems.3.1. A regular pyramid of six lateral sides is ins
ribed in the sphere S

2.Find its symmetry (i.e., isometry) group and its group of motions. How doesyour answer relate to the theorem on �nite subgroups of SO(3)?3.2. Answer the same questions as in Problem 3.1 for(a) the regular prism of six lateral sides;(b) the regular trun
ated pyramid of �ve lateral sides;
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ture 3. Finite Groups and the Platoni
 Bodies(
) the double regular pyramid of six lateral sides (i.e., the union of tworegular pyramids of six lateral sides with 
ommon base and verti
es at thepoles of the sphere);3.3. Let G+ be a �nite subgroup of SO(3) a
ting on the sphere S
2 andF the set of all the points �xed by nontrivial elements of G+; prove that Fis invariant with respe
t to the a
tion of G+ and

|F | = |G+| · |A| − 2(|G+| − 1);where A ⊂ F is a set 
ontaining exa
tly one point from ea
h orbit of thea
tion of G+ on the set F .3.4. Does the motion group of the 
ube have a subgroup isomorphi
 tothe motion group of the regular tetrahedron?3.5. Does the motion group of the dode
ahedron have a subgroup iso-morphi
 to the motion group of the 
ube?3.6. In the motion group of the 
ube, �nd all groups isomorphi
 to Znand Dn. Does it have any other subgroups?3.7. Prove the existen
e of the dode
ahedron in detail.3.8. The set F 
onsists of all the verti
es, all the midpoints of the edges,and the 
enters of the fa
es of the 
ube, and let G+ be the motion group ofthe 
ube. Prove that G+ a
ts on F and �nd all the orbits of this a
tion andthe stabilisators of all the points.3.9. Same question for(a) the regular tetrahedron; (b)* the dode
ahedron.


