Lecture 1

Main Definitions and Toy Geometries

This lecture begins with the study of three toy examples of geometries
(symmetries of the square, the cube, and the circle) and a model of the
geometry of the projective plane. These examples are followed by the main
definition of this course: a geometry in the sense of Klein is a set with a
transformation group acting on it. We then define some useful general notions
related to transformation groups. Finally, we study the relationships (called
morphisms) between different geometries, thus introducing the category of
all geometries. The notions introduced in this lecture are illustrated by some
problems dealing with toy models of geometries that will be worked out in
the exercise class.

§1.1. Symmetries of some figures. (1) Symmetries of the square.
Consider all the isometries of the unit square O = ABCD, i.e., all the
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Fig. 1.1. Symmetries of the square

distance-preserving mappings of the square to itself. Denote by sy, sy, and
Sae, Spq the line symmetries in the horizontal and vertical mid-lines, and in
the diagonals AC, BD, respectively. Denote by 7, r1, r2, r3 the rotations
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about the center of the square by 0, 90, 180, 270 degrees, respectively. These
eight transformations are all called symmetries of the square and denoted

Sym(0) = {ro, r1, r2, r3, SH, SV, Sac, Std}-

The set Sym(0) is closed under the operation of composition (also called
multiplication), i.e., the composition of two symmetries is a symmetry. For
example, Sqc * S, =T, Sy * Sy = T, I'| * ro = r3; here if we write, say, sqc *
r1, then s,. is performed first, and r; is performed second (this is important,
because composition is not commutative).

Other results appear in the following multiplication table:

* 70 1 T2 T3 SH Sv Sac | Sbd
0 0 1 T2 T3 SH Sy Sac Sbd
1 1 T2 T3 To Sac Sbd Sy SH
T2 r2 3 o r1 A% SH Sbd Sac
T3 3 o 1 T2 Sbd | Sac SH Sv
SH SH Sbd Sv Sac T0 T2 3 1
Sy sy Sac SH Sbd T2 To 1 3
Sac Sac SH Sbd Sy r1 r3 Tro r2
Sbd Sbd Sv Sac SH T3 T1 T2 70

Here (for example) the element sy at the intersection of the sixth column
and the fourth row is sy = ry % sy, the composition of ro and sy in that
order (first the transformation 7y is performed, then sy). Composition is
noncommutative.

Obviously, composition is associative. The set Sym(CJ) contains the iden-
tity transformation ro (also denoted id or 1). Any element X of Sym(OJ) has
an inverse X 1, i.e., an element such that X * X 1 = X1« X = 1.

The set Sym([J) supplied with the composition operation is called the
symmetry group of the square.

(2) Symmetries of the cube. Let

B={(z,y,2)eR¥ —1<2<1, -1<y<1,-1<2z<1}

be the unit cube. A symmetry of the cube is defined as any isometric trans-
formation of I3. The composition of two symmetries (of I?) is a symmetry.
There is a total of 48 symmetries of the cube (list them!). The set of all
symmetries of the cube supplied with the composition operation is called
the symmetry group of the cube and is denoted by Sym(I®). This group is
also associative, noncommutative, has an identity, and all its elements have
inverses.
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(3) Symmetries of the circle. Let S' := {(z, y) € R?| 22 + > = 1} be the
unit circle. Denote by Sym(S?') the set of all isometries of the circle. The
elements of Sym(S!) are of two types: rotations r,, o € [0, 2n), and axial
symmetries s,, o € [0, 2n). The composition of rotations is given by the
formula

T'oq *TB = T'(448) mod 2r-

There is also a nice formula for the composition of axial symmetries (find it!).
The set of all isometries of the circle supplied with the composition operation
is called the symmetry group of the circle and is denoted by Sym(S'). The
group Sym(S') has an infinite number of elements. As before, this group
is associative, noncommutative, has an identity, and all its elements have
inverses.

(4) Elliptic plane geometry. Consider the set X = Ant(S?) of all pairs
of diametrically opposed points on the sphere. (Thus elements of X are not
ordinary points, but pairs of points.) Then X = Ant(S?), the set of diamet-
rically opposed points on S? under the action of the orthogonal group O(3)
given by g: (z, —z) — (g(x), g(—z)) (which is well defined because g(—z) =
—g(z)) is called elliptic plane geometry. (Readers not familiar with the notion
of orthogonal group are referred to the Appendix.)

The elliptic “plane” (the set X) contains another classical geometric ob-
ject, namely the M&bius band. Can you find it there?

§1.2. Main definitions. Let X be a set (finite or infinite) of arbitrary
elements called points. By definition, a transformation group G acting on X is
a (nonempty) set G of bijections of X supplied with a composition operation
denoted by * and satisfying the following conditions:

(i) G is closed under composition, i.e., for any transformations g, ¢’ € G
the composition g * g’ belongs to G;

(ii) G is closed under taking inverses, i.e., for any transformation g € G,
its inverse ¢! belongs to G.

These conditions immediately imply that G contains the identity trans-
formation. Indeed, take any g € G; by (ii), g~ € G; by (i), g~ ' *g € G;
but g=! * g =id (by definition of inverse element). Note also that composi-
tion in G is associative (because the composition of mappings, in particular
transformations, is always associative).

If z € X and g € G, then by g we denote the image of the point = under
the transformation g. (The more usual notation g(z) is not convenient: we
have z(g x h) = (xg)h, but (g * h)(z) = h(g(x)).)
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A mapping of transformation groups a: G — H is called a homomor-
phism if o respects the product structure, i.e., a(gs * g2) = a(g1) * a(g2)
for all g1, g» € G ; a homomorphism o is a monomorphism (an epimorphism)
if o is injective (surjective, respectively).

Two transformation groups G and H acting on two sets X and Y (X =
Y is not forbidden) are called isomorphic if there exists a bijective mapping
@: G — H such that ¢(g*g¢') = ¢(g9) * ¢(¢’) for all g, ¢’ € G.

In this course, a pair (X : G), where G is a transformation group acting
on X, will be called the geometry (in the sense of Klein) of G on X. The
four examples in §2 define the geometry of the square, the geometry of the
cube, the geometry of the circle, and the geometry of the projective plane.
Another example is the set Bij(X) of all bijections of any set X. Note that
Bij(X) contains any transformation group G acting on X.

If X is a subset of R” and (X : G) is a geometry, then a subset F' C X is
called a fundamental region or domain of this geometry (or of the action of
G on X) if

e [ is open,;

e FF(g(F) = o for any g € G (except g =id).;

o X = |J Clos(g(F)), where Clos(.) denotes the closure of a set.

9eG

For example, in the case of the square, a fundamental domain of the action
of Sym(0) is the triangle AOM, where O is the center of the square and M
is the midpoint of side AB; of course Sym([J) has many other fundamental
regions. Thus fundamental regions are not necessarily unique. Moreover,
fundamental regions don’t always exist: for instance, Sym(S!) (and other
“continuous” geometries) do not have any fundamental regions.

§1.3. Order, generators, subgroups. By definition, the order of an
element g of a group G acting on a set X is the smallest natural number &
such that

g =grgr-xg=1
—_—
k

notation: ord(g). The order of the group G itself is the number of its elements
and is denoted by |G|.

For example, |Sym(OJ)| = 8, ord(r;) = 4, ord(sg) = 2, | Sym(S!)| = o,
and Sym(S!) contains elements of infinite order and elements of any finite
order (find an element of order 17).
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Suppose G is a transformation group acting on some set X. Then a sub-
set H of G is called a subgroup of G if H is closed with respect to composition
(i.e., hy, i € H= hxh' € H) and closed with respect to inverse elements (i.e.,
he€ H= h~!' e H)). Any subgroup H C G contains the identity element 1
(prove this!). For example, the set of rotations

Rot(O) = {rg, 1, r2, r3} C Sym(D)

is a subgroup (of order 4) of the symmetry group of the square, but the set
of {sm, sv, Sac, Spa} is not a subgroup (why?). Are there any subgroups of
order 2 in Sym(OJ)?

Suppose that G is a transformation group (finite or infinite); a family
{91, ..., gr} C G is (by definition) a set of generators of G if any g € G is the
composition of some elements of this family. For example, if @ is an element
of order 5 in some transformation group G, then {a, a?, a®, a*, a® =id} is a
subgroup of G generated by the one-element set {a}. Another example: the
two elements 1 and sg generate the group Sym(O) (check this!).

§1.4. The category of geometries. Category theory, or “abstract
nonsense” is a very general formal algebraic language; it will not be studied
or used in this course. However, you should know that a category is a class
of “objects” and “morphisms” satisfying certain axioms; for example, the
category of sets is the class of sets and their mappings, the category of groups
is the class of groups and their homomorphisms.

Similarly, the category of geometries is the class of all geometries (in the
sense of Klein, see §1.2) and their morphisms; by definition, a morphism (or
equivariant map) of a geometry (X : G) to a geometry (Y : H) is a correspon-
dence between them respecting their geometric structure (the group action);
more precisely, a morphism is a pair (¢, ), where ¢: X — Y is a mapping
and o: G — H is a homomorphism such that ¢(zg) = (¢(x))(x(g)) for all z €
X and g € G. A morphism (¢, o) of geometries is an embedding if ¢ and o
are injective, and then (X : G) and (9(X) : a(G@)) is called a subgeometry of
(Y : H); it is a surjection if ¢ and o are surjective.

Two geometries (X : G) and (Y : H) are called isomorphic, if there exist
a bijection ¢: X — Y and an isomorphism a: G — H such that

o(rg) = (p(z))(a(g)) forall ze€X andall ged.

This is a typical definition in the style of algebraic “abstract nonsense”. It
is so trivial and so tautological that it is almost impossible to understand.
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To understand it, try to prove that a(1) = 1, if the corresponding geometries
are equivalent.

§1.5. Some philosophical remarks. The examples in §1.1 (square,
cube, circle) were taken from elementary school geometry. This was done to
motivate the choice of the action of the corresponding transformation group.
Now, in the example of the cube, let us forget school geometry: instead of
the cube I3 with its vertices, edges, faces, angles, interior points and other
structure, consider the abstract set of points {4, B, C, D, A’, B’, C’, D'} and
define the “isometries” of the “cube” as a set of 48 bijections; for example,
the “rotation by 270°” about the vertical axis is the bijection

A—-B, B~C, C—D, D—A, A— B, B—C(C, D~ A,

and the 47 other “isometries” are defined similarly. Then (still forgetting
school geometry), we can define vertices, edges (AB is an edge, but AC’
is not), faces, prove that all edges are congruent, all faces are congruent,
the “cube” can “rotate” about each vertex, etc.). The result is the intrinsic
geometry of the set of vertices of the cube.

Above we called Q®) := Sym(I®) the geometry of the cube; Q()) is not
the same geometry as the geometry of the vertex set of the cube

Q© :=Sym(4, B, C, D, A, B, C', D').

Of course the group G acting in these two geometries is the same group of
order 48, but it acts on two different sets: the (infinite) set of points of the
cube I and the (finite) set of its 8 vertices 4, B, C, D, A’, B’, C’, D'. Thus
the algebra of the two situations is the same, but the geometry is different.
The geometry of the solid cube I® is of course much richer than the geometry
of the vertex set of the cube. For example, we can define line segments inside
the cube, establish their congruence, etc. (Note that segments of the same
length inside the cube are not necessarily congruent in the geometry of the
cube!)

Another example: the set of three points {4, B, C} with two transfor-
mations, namely the identity and the “symmetry”

A— A, B~ C, C~— B.

What should this geometry be called? Yes, it should be called the intrinsic
geometry of the vertex set of the isosceles triangle (why?).
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§1.6. Problems.

1.1. List all the elements (indicating their orders) of the symmetry group
(i.e., isometry group) of the equilateral triangle. List all its subgroups. How
many elements are there in the group of motions (i.e., orientation-preserving
isometries) of the equilateral triangle.

1.2. Answer the same questions as in Problem 1.1 for

(a) the regular n-gon (i.e., the regular polygon of n sides); consider the
cases of odd and even n separately;

(b) the regular tetrahedron;

(c) the cube;

(e)* the dodecahedron;

(f)* the icosahedron;

(g) the regular pyramid with four lateral faces.

1.3. Embed the geometry of the square into the geometry of the cube,
and the geometry of the circle into the geometry of the sphere.

1.4. For what n and m can the geometry of the regular n-gon be embed-
ded in the geometry of the regular m-gon?

1.5. Let G be the symmetry group of the regular tetrahedron. Find all
its subgroups of order 2 and describe their action geometrically.

1.6. Let GT be the group of motions of the cube. Indicate four subsets
of the cube on which GT acts by all possible permutations.

1.7. Let G be the symmetry group of the dodecahedron. Indicate subsets
of the dodecahedron on which G acts by all possible permutations.

1.8. Find a minimal system of generators for the symmetry group of

(a) the regular tetrahedron;

(b) the cube.

1.9. Embed the geometry of the cube in the geometry of the icosahedron.
How many such (different) embeddings are there?

1.10. Describe fundamental domains of the symmetry group of

(a) the cube;

(b) the icosahedron;

(c) the regular tetrahedron.

1.11. Describe the Mdbius band as a subset of RP2.



Lecture 2

Abstract Groups and Group Presentations

In order to study geometries more complicated than the toy models with
which we played in the previous lecture, we need to know much more about
group theory. Accordingly, in this lecture we study the relevant facts of this
theory (which will constantly be used in what follows).

The theory of transformation groups began in the work of several great
mathematicians: Lagrange, Abel, Galois, Sophus Lie, Felix Klein, Elie Car-
tan, Herman Weyl. At the beginning of the 20th century, algebraists decided
to generalize this theory to the formal theory abstract groups. In this lecture,
we will study this formal theory and learn that it is not a generalization
at all: Cayley’s Theorem says that all abstract groups are actually trans-
formation groups. We will also learn that two important classes of groups
(free groups and permutation groups) have certain universality properties.
Finally, we will find out how to present groups by means of generators and
relations; this allows to replace computations with groups by games with
words.

§2.1. Abstract groups. By definition, an (abstract) group is a set G
of arbitrary elements supplied with a binary operation * (usually called mul-
tiplication) if it obeys the following rules:

o (neutral element aziom) there exists a unique element e € G such that

gxe=exg=gforany g € G;

o (inverse element axiom) for any g € G there exists a unique element

g~ ! € G, called inverse to g, such that gx g~ ' =g ' xg =¢;

o (associativity aziom) (g*h)«k=g=x(h*k) for all g, h, k € G.

A group (G, %) is called commutative or Abelian if g+« h = hx g for all
g, h € G (in that case the operation is usually called a sum and the inverse
element is usually denoted by —g instead of g=1). Let (G, %), (H, o) be
groups, ¢: G — H a mapping; ¢ is called a homomorphism (or a morphism
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of groups) if it preserves the operations, i.e., ®(g1 * g2) = ©(g1) o 9(g2)); a
homomorphism ¢ is a monomorphism (respectively, an epimorphism or an
isomorphism) if the mapping ¢ is injective (resp., surjective or bijective).
From the point of view of abstract algebra, isomorphic groups are identical.

The notions of order (of elements of a group and of the group itself) and
of generator for abstract groups are defined exactly like for transformation
groups (see §1.3).

Examples. Any transformation group is a group; the following groups
are standard (you should know them):

Lo, residues modulo m;

Sn, permutations on n objects;

F(ay, ..., ag), the free group on k generators;

GL(n), nondegenerate linear operators on R";

O(n) and SO(n), orthogonal and positive orthogonal operators on R™.

From now on we omit the group operation symbol, i.e., we write gh instead
of g * h.

A subgroup H of a group G is a subset of G which satisfies the group
axioms. A subgroup H C G is normal if gHg=' = H for any g€ G. If H
is a subgroup of G, then a coset H, C G, for some g € G, is the set of all
elements of the form gh for h € H. Two cosets either do not intersect or
coincide. If H is normal, there is a well-defined operation in the family of
cosets: the product of two cosets is the coset containing the product of any
two elements of these cosets; the family of cosets supplied with this product
operation satisfies the group axioms; it is called the quotient group of G by H
and is denoted by G/H.

Example. in the additive group of integers (Z, +), elements of the form
5k, k € Z, constitute a normal subgroup, denoted 5Z; the corresponding
quotient group Z/5Z is isomorphic to the group Zs.

§2.2. The Lagrange theorem. The elementary theorem proved below
is the first structure theorem about abstract groups. It was proved (for
transformation groups) almost two centuries ago by Lagrange.

Theorem 2.1. If H is a subgroup of a finite group G, then the order
of H divides the order of G.

Proof. The cosets of H in G form a partition of the set of elements
of G and all have the same number of elements as H. [J

Corollary. Any group G of prime order p is isomorphic to Zy.



§2.3. Free groups and permutations 15

Proof Let g€ @, g#e. Let m be the smallest positive integer such
that g™ =e. Then H := {e, g, g%, ..., g™ '} is a subgroup of G (why?) and
by Theorem 1, m divides p. This is impossible unless m = p, but then H =
G is obviously isomorphic to Z,. O

§2.3. Free groups and permutations. In this section, we study two
classes of groups: the free groups (which have the “least structure”) and the
permutation groups (which have the “most structure”).

Let F:={f1, ..., fr} be a set of symbols. Then the set of formal symbols
(called letters)

A::{eafla"'afkafl_17""fk_l}

will be our alphabet. A string of letters from our alphabet will be called a
word. Two words wy, and ws are called equivalent, if one can be obtained
from the other by using the following trivial relations f; f{l = f{l fi = e for
any 7 and fe =ef = f for any f € A; for example

fifst~ fifste ~ fifs o fst ~ fufs e

The product of two words is defined as their concatenation (i.e., writing then

one after the other). The free group with generators f1, ..., fr is defined as
the set of equivalence classes of words supplied with the product (concatena-
tion) operation and is denoted by F = F[fi, ..., fi].

For example, F[f] is isomorphic to (Z, +), while F[f;, f] is not commu-
tative.

The permutation group on n objects is the family of all bijections of the
set {1, 2, ..., n} supplied with the operation of composition; it is denoted
by Sp. It consists of n! elements denoted by [i1, ..., iy], where iy := B(k)
and (3 is the bijection defining the given element.

Free groups and permutation groups have important “universality” prop-
erties.

Theorem 2.2. (i) For any finite group G there exists a monomorphism
of G into Sy, for some n.

(ii) For any group G with a finite number of generators there exists an
epimorphism of S,, (for some n ) onto G.

Sketch of the proof. (i) Let |G| =n and go € Gj; then the map-
ping

G2>gr—yggeG
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is a bijection of the n-element set G; this bijection can be identified with an
element of S;,. Thus we have obtained a mapping G — S,,; it is not difficult
to prove that this mapping is a monomorphism.

(ii) Let g1, ..., gn be a set of generators of G. Then it is not difficult to
prove that the mapping

o Flf1, ..., fu] = G givenby oa(f;)=g¢;, i=1,...,n,

is an epimorphism. [J

§2.4. Group presentations. A presentation of a group is a way of
defining the group by means of equations (called defining relations) in the
generators of the group. The formal definition is the following. An expres-
sion of the form G = (g1, ..., gn : R1 =+ = R, = 1), where Ry, ... R}, are
words (relators) in the alphabet A = {g1, ..., gng; "5 ..., gn '}, is called a
presentation of the group G; the group G is defined by its presentation as

the quotient group
Flgr, -, gnl/{ R0, -, Bic},

where {Ry, ..., Ri} is the minimal (by inclusion) normal subgroup of the
group Flgi, ..., gn] containing the elements (relators) Ry, ..., Ry.

This formal definition is difficult to understand. But the notion of group
presentation is simple. It means that elements of G are words in the alphabet
A defined up to the trivial relations (recall §2.3 above) and all the relations
Ry =e, ..., Ry = e; the product is concatenation.

Here are some examples:

® Zpm={a :a™);

¢ Flgt, ooy gal = (g1, -y g0 ¢ )

o Sz = (51, 89, 53 : 57, 53, 53, 51525155 5] S5, 51825185 8] sy t).

More details and examples will be given in the exercise class.

§2.5. Cayley’s theorem. The following theorem (due to Cayley) shows
that the notion of abstract group is not a real generalization: all groups are
in fact transformation groups!

Theorem 2.3. Any group G is a transformation group acting on the
set G by right multiplication: g — ggo for any go € G.

The proof is a straightforward verification.

Corollary. Any group is a geometry in the sense of Klein (i.e., in the
sense of formal definition given in §1.2).

This corollary shows that the definition of geometry given in §1.2 is of
course too general; additional restrictions on the set of elements and the
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transformation group are needed to obtain an object about which most math-
ematicians will agree that it is a bona fide geometry. However, there seems to
be no formal agreement on this subject, so that the “additional restrictions”
to be imposed are a matter of opinion, and we will not specify any (at least
on the formal level) in this course.

§2.6. Problems.

2.1. Describe all the finite groups of order 6 or less and supply each with
a geometric interpretation.

2.2. Describe all the normal subgroups and the corresponding quotient
groups of

(a) the equilateral triangle;

(b) the motion group of the regular tetrahedron.

2.3. Let G be the motion group of the plane, P its subgroup of parallel
translations, and R its subgroup of rotations with fixed center O. Prove that
the subgroup P is normal and the quotient group G/P is isomorphic to R.

2.4. Prove that if the order of a subgroup is equal to half the order of
the group (i.e., the subgroup is of index 2), then the subgroup is normal.

2.5. Find all the orbits and stabilizers of all the points of the group G
generated by the permutation

(58394106217) € Sio

acting on the set {1, 2, 3,4, 5,6, 7, 8,9, 10}.

2.6. Find the maximal order of elements in the group (a) Ss; (b) Sis.

2.7. Find the least natural number n such that the group Si3 has no
elements of order n.

2.8. Prove that the permutation group S, is generated by the transposi-
tion (12) and the cycle (12...n).

2.9. Present the symmetry group of the equilateral triangle by generators
and relations in two different ways.

2.10. How many homomorphisms of the free group in two generators into
the permutation group Ss are there? How many of them are epimorphisms?

2.11. Prove that the group presented as follows

{a,b|a®> =b" =a ‘bab =1)

is isomorphic to the dihedral group D, (defined in Lecture 3).
2.12. Show that if the elements a and b of a group satisfy the relations
a® =0 =1and b~ 'ab = a?, then a = 1.



Lecture 3
Finite Subgroups of the Isometry Group
of the Sphere and the Platonic Bodies

This lecture is devoted to the classification of regular polyhedra (the
five “Platonic bodies”, see Figure 3.1), whose aesthetic and scientific ap-

NG L

Fig. 3.1. The five Platonic bodies

peal has not weakened over the centuries, attracting, from the philosophical
and artistic point of view, such great thinkers as Plato and Leonardo da
Vinci (see his models of the dodecahedron and the icosahedron in Fig. 3.2),
the astronomer Kepler (planetary orbits, see his weird engraving of inscribed
Platonic bodies, supposedly indicating the distances from the planets to the
Sun, Fig. 3.3), mathematicians and physicists such as Pythagoras and Heisen-
berg (the “singing spheres”).

The proof that we give here is essentially group theoretic (we reduce the
classification problem of regular polyhedra to classifying finite subgroups of
the orthogonal group O(3), or, which is the same thing, the isometry group
of the sphere S?). This proof is quite natural and more geometric, in a deeper
sense, than the tedious and eclectic space geometry proof known from ancient
times. Thus each of the Platonic bodies is a geometry in the sense of Klein
with its own finite transformation group. The proof also serves as a beautiful
illustration of the idea that transformation groups are the formalization of
the idea of symmetry.
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Fig. 3.2. Da Vinci engravings

§3.1. Orbits, stabilizers, class formula. Let (X : G) be some trans-
formation group acting on a set X and let € X. Then the orbit of z is
defined as

Orb(x) = {g(x)lg € G} C X,

and the stabilizer of = is
St(z) := {g € Glg(z) =z} C G.

For example, if X = R? and G is the rotation group of the plane about the
origin, then the set of orbits consists of the origin and all concentric circles
centered at the origin; the stabilizer of the origin is the whole group G, and
the stabilizers of all the other points of R? are trivial (i.e., they consist of one

element — the identity id € G).
Suppose (X : G) is an action of a finite transformation group on a finite

set. Then the number of points of G is (obviously) given by

[1G| = [Orb(x)| x [St(a)]]
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Fig. 3.3. Kepler’s theory of planetary orbits

for any z € X. Now let A C X be a set that intersects each orbit at exactly
one point. Then the number of points of X is given by the formula

X = Y |

z€A
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called the class formula. This formula, just as the previous one, follows
immediately from definitions.

§3.2. Finite subgroups of SO(3). Consider the geometry (X : G) of
the two-dimensional sphere

X=8={(z,y,2) eR*|2? + > + 22 =1}

defined by the action of its isometry group G'= Sym S2. (In linear algebra
courses this group G is defined in a different (but equivalent) way and is usu-
ally denoted by O(3).) The group G = O(3) contains the rotation subgroup
GT = Rot(S?): each element of GT is a rotation of the sphere about some
axis passing through the origin by some angle ¢, 0 < ¢ < 2n. In linear algebra
courses this group G7 is defined in a different (but equivalent) way and is
usually denoted by SO(3).

Our goal is to find the finite subgroups of Gt = SO(3) and of G = O(3).
We begin with some examples.

(i) The monohedral group Z, for n > 2 (n elements); its elements are
rotations about the vertical axis (i.e., the z-axis) by angles of 2krn/n, where
k=0,...,n—1. (N.B.: the term monohedral is not standard.)

(ii) The dihedral group D, for some n > 1 (2n elements); the group D,, is
the isometry group of the regular n-gon (lying in the horizontal plane Ozy
and inscribed in the sphere S? ); D, consists of n rotations (by angles of
2kn/n, k=0,1,...,n—1) and n symmetries with respect to the horizontal
lines passing through the center, the vertices, and the midpoints of the sides
(be careful: these lines are different when n is even or odd —look at the
figure!). Note that D(n) C SO(3) and the symmetries of D(n) with respect
to the horizontal lines are actually rotations in space (about these lines by
angles of 180°).

Fig. 3.4. The dihedral group D, forn =5 and n =6
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(iii) The isometry group of the reqular tetrahedron inscribed in the sphere

S? (24 elements), denoted by Sym(A?) (we will see later that Sym(A?)

is isomorphic to the permutation group S4) and its (12 element) rotation
subgroup:

Rot(A?) = Sym™ (A?)  Sym(A?),

consisting of 8 rotations about 4 axes (containing
one vertex) by angles of 2n/3 and 4r/3, three rota-
tions by © (describe them!) and the identity.

(iv) The isometry group Sym(I?3) of the cube (48
elements) and its rotation subgroup (consisting of
Fig. 3.5. Sym(A?) (24 elements)):

Rot(I*) = Sym™ (I*) C Sym(I?)

(see the previous lecture). If we join the center of each of the 6 faces of the
cube by segments to the four neighboring centers, we obtain the carcass of
the octahedron dual to the cube (see Fig. 3.6 (a). The octahedron has 6
vertices and 8 triangular faces; its isometry group is obviously the same as
that of the cube.

(v) The isometry group Sym(Dod) of the dodecahedron (120 elements)
and its (60 element) rotation subgroup

Rot(Dod) = Sym™ (Dod) C Sym(Dod).

The dodecahedron is the (regular) polyhedron (inscribed in the sphere S?)
with 12 faces (congruent regular pentagons), 30 edges, and 20 vertices (see
Fig. 3.6 (b)). The existence of such a polyhedron will be proved at the
end of this lecture. Joining the centers of the faces of the dodecahedron

(b)

Fig. 3.6. Dual pairs cube-octahedron and dodecahedron-icosahedron
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having a common edge (see Fig. 3.6 (b) again, as well as Fig. 3.2), we get the
icosahedron dual to the dodecahedron, which has the same transformation
group.

The following theorem states that there are no other finite subgroups.

Theorem 3.1. Any finite subgroup of G+ = Sym™(S?) = SO(3) is iso-
morphic to one of the following groups:

(i) Zp, (ii) D, (iii) Rot(A?), (iv) Sym™(I?), (v) Sym™(Dod).

Sketch of the proof. It isknown (see the linear algebra course
and the Appendix) that any element of SO(3) (and hence of GT) is a rotation
about a diameter of the sphere S? and has two fixed points (the ends of the
diameter). Let F' be the set of fixed points of the group G:

F={2eS*|3ge Gt —id, g(x) = z}.

Consider the (finite) geometry (F : G1) and let A be a set containing one
point in each orbit of G in F. First we claim that the number of points in
Fis |F| =]A||GT| = 2(JG*| —1). This will be proved in the exercise class.
Using the class formula from §3.1, we can write |F| =" _ , |G*|/v(z), where
v(z) = |St(x)|. Note that v(x) is the order of the rotation subgroup of G*
determined by the diameter containing . Replacing |F'| by its value found
above and dividing by |G|, we obtain

2-%:2(1-%).

r€EA

The left-hand side of this formula is less than 2; hence the sum in the right-
hand side can contain only 2 or 3 summands; therefore there can be only
2 or 3 orbits. Denote by x1, x2, x3 points of these three orbits; denote by
v1, V2, v3 the values of v(z) (in nondecreasing order). It is not difficult to see
that only the following cases are allowed by the formula above:

V1 V2 V3 |G+|
case 1 n n — n
case 2 2 2 n 2n
case 3 2 3 3 12
case 4 2 3 4 24
case b 2 3 5 60

The five cases correspond to (i)—(v), respectively. [
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(For the details of the proof, see, for example, the book Géoméirie by
Marcel Berger, pp. 102—108).

Corollary. Any finite subgroup of G = Sym(S?) is isomorphic to one of
the following groups:

() Znp, (ii) Dy, (iii) S4, (iv) Sym(I?), (v) Sym(Dod).

§3.3. The five regular polyhedra. A regular polyhedron is defined as
a convex polyhedron (inscribed in the sphere S?) such that

(i) all its faces are congruent regular polygons of k sides for some k > 2;

(ii) the endpoints of all the edges issuing from each vertex lie in one plane
and form a regular [-gon for some [ > 2.

Theorem 3.2. There are exactly five different reqular polyhedra: the
tetrahedron, the cube, the octahedron, the dodecahedron, and the icosahedron.

Proof. This theorem follows from the Corollary to Theorem 3.1. In-
deed, the definition implies that the isometry group of a regular polyhedron is
finite and therefore must be one of the groups listed in Theorem 3.1. The two
“series” (i) and (ii) do not give any (nondegenerate) polyhedra (why?). In
case (iii), we get the tetrahedron (because its symmetry group is isomorphic
to the permutation group S4). In case (iv), we get the cube and its dual, the
octahedron, in case (v), the dodecahedron and its dual, the icosahedron. O

Thus we obtain five geometries with three different group actions (tetrahe-
dron, cube ~ octahedron, dodecahedron ~ icosahedron). To understand the
group actions in these geometries, it is useful to construct their fundamental
regions.

§3.4. The five Kepler cubes. Kepler observed that the cube can be
inscribed in five different ways into the dodecahedron. Here we will perform
the opposite construction: starting from the cube, we will construct a do-
decahedron circumscribed to the cube. This will prove the existence of the
dodecahedron.

Consider two copies ABCDE and A'B’C'D'E’ of the regular pentagon
with diagonals of length 1. Place these pentagons in the plane of the unit
square PQRS so that the diagonals BE and B’E’ are identified with P.S and
QR, respectively, and CD is parallel to C'D’. By rotating the pentagons in
space about PS and QR, identify the sides CD and C’'D’ above the square
PQRS.

Now suppose PQRS is the top face of the unit cube PQRSP'Q'R’S’.
Place two more pentagons on the face SRR'S’ of the cube the same way as
before, so that their parallel sides are parallel to SR. Now rotate these



§3.5. Problems 25

two pentagons until these parallel sides are identified. Then it is not
hard to prove that the upper endpoint of the identified segment will co-
incide with one of the endpoints of the common (identified) segment of
the first two pentagons. Perform similar constructions on the other faces
of the cube. The polyhedron thus obtained will be the dodecahedron.

Fig. 3.7. Constructing the dodecahedron

§3.5. Problems.

3.1. A regular pyramid of six lateral sides is inscribed in the sphere S?.
Find its symmetry (i.e., isometry) group and its group of motions. How does
your answer relate to the theorem on finite subgroups of SO(3)?

3.2. Answer the same questions as in Problem 3.1 for

(a) the regular prism of six lateral sides;

(b) the regular truncated pyramid of five lateral sides;
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(c) the double regular pyramid of six lateral sides (i.e., the union of two
regular pyramids of six lateral sides with common base and vertices at the
poles of the sphere);

3.3. Let G be a finite subgroup of SO(3) acting on the sphere S? and
F the set of all the points fixed by nontrivial elements of G; prove that F
is invariant with respect to the action of G and

[F| =1G"|- 4] - 2(G"| - 1),

where A C F' is a set containing exactly one point from each orbit of the
action of GT on the set F.

3.4. Does the motion group of the cube have a subgroup isomorphic to
the motion group of the regular tetrahedron?

3.5. Does the motion group of the dodecahedron have a subgroup iso-
morphic to the motion group of the cube?

3.6. In the motion group of the cube, find all groups isomorphic to Z,
and D,,. Does it have any other subgroups?

3.7. Prove the existence of the dodecahedron in detail.

3.8. The set F consists of all the vertices, all the midpoints of the edges,
and the centers of the faces of the cube, and let G* be the motion group of
the cube. Prove that G acts on F' and find all the orbits of this action and
the stabilisators of all the points.

3.9. Same question for

(a) the regular tetrahedron; (b)* the dodecahedron.



