PROBLEMS for Lecture 7

- **7.1.** Prove that inversion maps circles and straight lines to circles or straight lines.
- **7.2.** Prove that inversion maps any circle orthogonal to the circle of inversion into itself.
- **7.3.** Prove that inversion is conformal (i.e., it preserves the measure of angles).
- **7.4.** Prove that if P is point lying outside a circle γ and A, B are the intersection points with the circle of a line l passing through P, then the product $|PA| \cdot |PB|$ (often called the *power of* P *with respect* to γ) does not depend on the choice of l.
- **7.5.** Prove that if P is point lying inside a circle γ and A, B are the intersection points with the circle of a line l passing through P, then the product $|PA| \cdot |PB|$ (often called the *power of* P *with respect to* γ) does not depend on the choice of l.
- **7.6.** Prove that inversion with respect to a circle orthogonal to a given circle \mathcal{C} maps the disk bounded by \mathcal{C} bijectively onto itself.
- **7.7.** Prove that any Euclidean circle inside the disk model is also a hyperbolic circle. Does the ordinary (Euclidean) center coincide with its "hyperbolic center"?
- **7.8.** Study Figure 7.11. Does it demonstrate any tilings of \mathbb{H}^2 by regular polygons? Of how many sides? Do you discern a Coxeter geometry in this picture with "hyperbolic Coxeter triangles" as fundamental domains? What are their angles?
 - **7.9.** Prove that any inversion of $\overline{\mathbb{C}}$ preserves the cross ratio of four points:

$$\langle z_1, z_2, z_3, z_4 \rangle := \frac{z_3 - z_1}{z_3 - z_2} : \frac{z_4 - z_1}{z_4 - z_2}.$$

- **7.10*.** Using complex numbers, invent a formula for the distance between points on the Poincaré disk model and prove that "symmetry with respect to straight lines" (i.e., inversion) preserves this distance.
- **7.11.** Prove that hyperbolic geometry is homogeneous in the sense that for any two flags (i.e., half planes with a marked point on the boundary) there exists an isometry taking one flag to the other.
- **7.12.** Prove that the hyperbolic plane (as defined via the Poincaré disk model) can be tiled by regular pentagons.
- **7.13.** Define inversion (together with the center and the sphere of inversion) in Euclidean space \mathbb{R}^3 , state and prove its main properties: inversion takes planes and spheres to planes or spheres, any sphere orthogonal to the sphere of inversion to itself, any plane passing through the center of inversion to itself.
- **7.14.** Using the previous exercise, prove that any inversion in \mathbb{R}^3 takes circles and straight lines to circles or straight lines.
 - **7.15.** Prove that any inversion in \mathbb{R}^3 is conformal (preserves the measure of angles).
 - 7.16. Construct a model of hyperbolic space geometry on the open unit ball (use Exercise 7.13).
 - 7.17. Prove that there is a unique common perpendicular joining any two nonintersecting lines.
- **7.18.** Let $A_{\infty}P$ and $A_{\infty}P'$ be two parallel lines (with A_{∞} a point on the absolute). Given a point M on $A_{\infty}P$, we say that $M' \in A_{\infty}P'$ is the *corresponding point* to M if the angles $A_{\infty}MM'$ and $A_{\infty}M'M$ are equal. Prove that any point $M \in A_{\infty}P$ has a unique corresponding point on the line $A_{\infty}P'$.
- **7.19.** The locus of all points corresponding to a point M on $A_{\infty}P$ and lying on all the parallels to $A_{\infty}P$ is known as a *horocycle*. What do horocycles look like in the Poincaré disk model?