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Standard Complexity Classes

Let data be coded in matrix A, and n be dimension of the problem.

Combinatorial Optimization

m NP-hard problems: 2" operations. Solvable in O(p(n)||Al|).
m Fully polynomial approximation schemes: O (% In® HAH)

m Polynomial-time problems: O(p(n)In® | Al]).

Continuous Optimization

m Sublinear complexity: O (%HAHﬁ) a, > 0.

m Polynomial-time complexity: O (p(n)In(2|/A])).



Basic NP-hard problem: Problem of stones

Given n stones of integer weights ai, ..., a,, decide if it is possible
to divide them on two parts of equal weight.

Mathematical formulation

Find a Boolean solution x; = +1, i =1,...,n, to a single linear

n
equation ) a;x; = 0.
i=1
n
Another variant: ) a;x; = a;.
i=2

NB: Solvable in O <In n-y, |a,-|> by FFT transform.
i=1



Immediate consequence: quartic polynomial

Theorem: Minimization of quartic polynomial of n variables is
NP-hard.

Proof: Consider the following function:

n n 2 n 4

f(X) = ZX?—% (ZX?) I <Z a,-x,-) +(1—X1)4.

i i=1 i=1

The first part is (A[x]?, [x]?), where A =1 — Le,e = 0 with

Ae, =0, and [x]?=x? i=1,...,n.

Thus, f(x) =0iffall x; =7, > a;x; =0, and x; = 1. O
=

Corollary: Minimization of convex quartic polynomial over the
unit sphere is NP-hard.



Nonlinear Optimal Control: NP-hard

Problem: muin{ f(x(1)): X' =g(x,u), 0 <t <1, x(0)=xo }.

Consider g(x, u) = Lx - (x,u) — u.

Lemma. Let |[x||> = n. Then ||x(¢t)|>=n0<t < 1.
Proof. Consider g(x, u) = (ﬁ - l) u and let x' = g(x, u). Then

(X', x)y = <<ﬁ—l> u,x)y = 0.

Thus, ||x(t)]|? = ||x0|/?. Same is true for x(t) defined by g. O
Note: We have enough degrees of freedom to put x(1) at any
position of the sphere.

Hence, our problem is:  min{f(y): [ly||> = n}.



Descent direction of nhonsmooth nonconvex function

i — _1 J = mi .
Consider ¢(x) = (1 7) max | ;] min_ Ixi| + 1(a, x)|,

n
where a € Z7 and vy def Y>> a;j > 1. Clearly, (0) =0.

i=1
Lemma. It is NP-hard to decide if ¢(x) < 0 for some x € R".
Proof: 1. Assume that o € R" with o; = £1 satisfies (a,0) = 0.
Then ¢(0) = —% <0.
2. Assume ¢(x) < 0 and max |x;| =1. Denote § = |(a, x)|.

1<i<n

Then [xi| >1—-2+4,i=1,...,n
Denoting o; = signx;, we have gjx; > 1 — % + 6. Therefore,

loi —xi| =1—0oix; < % — 9, and we conclude that

(a,0)] < [a,x)|+[(a,0 —x)| < 0+~ max |o; — X
1<i<n
< (1-9)0+1 < 1.

Since a € Z" , this is possible iff (a,0) = 0. O



Black-box optimization

Oracle: Special unit for computing function value and derivatives
at test points. (0-1-2 order.)

Analytic complexity: Number of calls of oracle, which is
necessary (sufficient) for solving any problem from the class.

(Lower/Upper complexity bounds.)
Solution: e-approximation of the minimum.

Resisting oracle: creates the worst problem instance for a
particular method.
m Starts from “empty” problem.

m Answers must be compatible with the description of the
problem class.

m The bad problem is created after the method stops.



Bounds for Global Minimization

Problem: f* = min{f(x):x € Bp}, By={x € R": 0 < x < ep}.

Problem Class: |f(x) — f(y)| < L||x — y|leo Vx,y € Bh.
Oracle: f(x) (zero order).
Goal: Find x € B,: f(x) — f* <e.

Theorem: N(e) > (£)".

Proof. Divide B, on p” |-balls of radius 2—1p.

Resisting oracle: at each test point reply f(x) = 0.
Assume, N < p"”. Then, 3 ball with no questions. Hence, we can
take f* = —ﬁ. Hence, € > ﬁ. O

Corollary: Uniform Grid method is worst-case optimal.




Nonsmooth Convex Minimization (NCM)

Problem: f* = min{f(x) : x € Q}, where
B QC R"isaconvexset: x,y € Q= [x,y] € Q. Itissimple.
m f(x) is a sub-differentiable convex function:
fly) = f)+(f(x),y—x), xyeQ,
for certain subgradient f/(x) € R".

Oracle: f(x), f'(x) (first order).
Solution: e-approximation in function value.
Main inequality: (f'(x),x — x*) > f(x) — f* >0, Vx € Q.

NB: Anti-subgradient decreases the distance to the optimum.



NCM: Lower Complexity Bounds

Let Q = {||x| < 2R} and xk*1 € x° + Lin{f'(x°)

Consider the function f,(x) = L max x;

f'(x*)1.

From the problem: mTin (LT + %72), we get
2
Ty = —“Lm = m’f/g, f,:f, = —2Z7m = ,#1/27 ||X H2 - mT = R

NB: If x° = 0, then after k iterations we can keep x; = 0 for i > k
Lipschitz continuity: f;y1(x*) — £

* LR
i = R = goyee
. 2
Strong convexity: fi1(x*) — fii > —fiq = m

Both lower bounds are exact!




Subgradient Method

Problem: >r(nei(r;}{f(x) : g(x) <0},

where @ is a closed convex set, and convex f, g € CE’O(Q).

Method If ”g,(( k))” > h then a)

k1 _ k_ _&(®) s k
T (X e EE (X ))'
k+1 _ kK h 1ok
else b) x —kﬂ'Q (x el f'(x )) )
D = i f  k . Let N=N Np.
enote fy OQJQN{ (x") € b)}. Let L+ Np

Theorem: If N > 5[|x° — x*||2, then fj — f* < hL. (h=%.)

Proof: Denote r, =[xk — x*|.

c 22 280K s ky ko £« _p2
A): Ficn ~ Mic S T (8 (X)X =X + e < —h

g
h{f"(xk),xk—x*
): iy = ok < ORI < SR — ) 4

Thus, Np2B (5 — F*) < r2+ h2(Np — N,) = r2+ h2(2Np — N). £




Smooth Convex Minimization (SCM)

Lipschitz-continuous gradient: ||f'(x) — f'(y)|| < L||x — y||.
Geometric interpretation: for all x,y € dom F we have

fl(y) — () = {f'(x),y —x)

— g‘<f/(X—|— 7(y — x) — f'(x),y — x)dt < é||x —y|%

0

IN

Sufficient condition: 0 < f”(x) < L- I, x € dom .
Equivalent definition:

F(y) = F() + (F(x),y = %) + ZIF(x) = P2
Hint: Prove first that f(x) — f* > 2-[|f/(x)||2.



SCM: Lower complexity bounds

Consider the family of functions (k < n):

fi(x) =3 X1 + Z(X: —X1+1) +XZ —X1 = %(Akx,x> — X1-
=1

Let R} = {x € R" xi =0,i>k}. Then fiip(x) = fi(x),

x € R

Clearly, 0 < (Agh, h) < h? + z 2(h? + h?,.1) + h2 < 4]h|?,

2 -1 0 )
-1 2 -1 0
0 -1 2 k lines
Ak = 0 1 2 -1 ’
0o -1 2 |

Op—rk.k On—k,n—k



ktlZi 1 <<k
Hence, Axx = €1 has the solution XX = k+1 0 T ==
0, i>k.
1 —k = — —
Thus £ = J{AXK, 55) = (e1, %) = —3(e1, X*) = =505y, and
k 2 K
Sk 12 k+1—i\° _ 1 2 _ k(2k+1)
X% )1°= 21< k+1 ) = (k+1)7 ,Zl’ = 6(k+1) -
1= 1=

Let X =0 and p < nis fixed.

Lemma. If xk € £, & Lin{£](x%), ..., £)(x*"1)}, then L\ C R}
Proof: xX°=0¢ Ry, f,(0) = —e1 € R = xt e Ry, fo(x1) € Ry, 00
Corollary 1: f,(x*) = fi(x¥) > £

Corollary 2: Take p=2k+ 1. Then

fo(x*) 1 k4 2kt (2k+1)(4k+3)] 3
[O—xr2 = | 2(k+0) 2(2k+2)/ 3(k+1) = 2(2k+1)(4k+3)"

2k+1
k = =2k+1 2k+3)(k+2 =
Ik =58 P2 3 (PR = EED > e
=



Some remarks

1. The rate of convergence of any Black-Box gradient methods as
applied to f € C1! cannon be high than O(%).
2. We cannot guarantee any rate of convergence in the argument.
3. Let A=LLT and f(x) = 3(Ax,x) — (b,x). Then

f(x) — f* = 3||LTx — d||?, where d = LTx*.
Thus, the residual of the linear system L7 x = b cannot be
decreased faster than with the rate O(%)
(provided that we are allowed to multiply by L and LT.)

4. Optimization problems with nontrivial linear equality constraints
cannot be solved faster than with the rate O(%)



Methods for Smooth Minimization with Simple Constraints

Consider the problem: min{f(x): x € Q},

where convex f € CLl’l(Q), and Q is a simple closed convex set
(allows projections).

Gradient mapping: for M > 0 define
Ti(x) = argminlf (x) + (F(x),y = x) + Blx =y

If M > L, then
F(Tm(x)) < £(x) + (F(x), Tm(x) = x) + G lIx = Tu(x)I]
Reduced gradient: gy (x) = M- (x — Ty(x)).

Since (f'(x) + M(Tm(x) — x),y — Tm(x)) >0 for all y € Q,
F(x) = F(Tm(x) = Fllx = Tm(I? = z7llemG)I%, (= 0)
Fy) = F(x) + (F'(x), Tm(x) = x) + {F'(x),y = Tm(x))
> f(Tm(x)) — 1 lem(X)I? + (gm(x).y — Tm(x)).



Primal Gradient Method (PGM)

Main scheme: x%c Q, xK*1 =T, (x¥), k>0.
Primal interpretation:  x*™1 = g (xk — 1f/(x¥)).

Rate of convergence. F(xk) — F(xkT1) > [ lgu(x9)|2.
FTL(X) = < orllee(x)|? + (gu(x), Te(x) — x*)
< sr(lec(x)ll + LR)* — 5R2.
Hence, ||lgL(x)|| > [2L(F(TL(x)) — F*) + [2R?]"* — LR

2L(F(TL( c .
B [2L(f(n(x())( L )))L2R2)]1/2+LR > 7 (F(Ti(x)) = 7).

Thus, £(xK) = F(x<11) 2 o (F(xKF1) = F7)2.

Similar situation:  a/(t) = —a%(t) = a(t) ~ 1.

Conclusion: PGM converges as O(%) This is far from the lower
complexity bounds.



Dual Gradient Method (DGM)

Model: Let Ak >0,i=0,... k and S, & z Ak Then
i=0

Skf(y) = L) dﬁfzo MNP + (P (X)), y = x)], v € Q.
Our method:

Xt = argmin {(y) & L) + Hlly =2}

Let us choose )\k =1and M= L. We prove by induction
« def def *
(*): Fo= Zof( y) Sp = minvk(y). (= (k+1)f +5R?)
1. k=0. Then y° = T;(x?).
2. Assume () is true for some k > 0. Then

Yisr = min [i(y) + F(XK) 4+ (F(x5), y = xK)]
Z;ﬂeig [+ 5lly = X524+ F(F) + (F(xR),y — x9)] .

(f
e can take y**t = Ty (x). Thus, =5 Z: f(y') < f* + 2(k11):



Some remarks

1. Dual gradient method works with the model of the objective
function.

2. The minimizing sequence {y*} is not necessary for the
algorithmic scheme. We can generate it if necessary.

3. Both primal and dual method have the same rate of
convergence O(%). It is not optimal.

May be we can combine them in order to get a better rate?



Comparing PGM and DGM

Primal Gradient method

m Monotonically improves the current state using the local
model of the objective.

m Interpretation: Practitioners, industry.

Dual Gradient Method

m The main goal is to construct a model of the objective.

m It is updated by a new experience collected around the
predicted test points (x).

m Practical verification of the advices (yx) is not essential for
the procedure.

m Interpretation: Science.

Hint: Combination of theory and practice should give better results



Estimating sequences

Def. A sequences {¢x(x)}32, and { A}y Ak > 0 are called the
estimating sequences if Ay — 0 and Vx € Q, kK > 0,

(%) 1 dr(x) < (1 — X)f(x) + Akgo(x).
Lemma: If (xx) : f(x¥) < ¢} = )r;ngg ®k(x), then
F(xF) = 7 < Meldo(x) — £] 0.
Proof. f(x¥) < ¢} = )r;nelg or(x) < )r(’ngg[(l — M) F(x) + Ako(x)]
< (1= X)) (X*) + Aepo(x*). O
Rate of A\, — 0 defines the rate of f(xk) — f*.

Questions

m How to construct the estimating sequences?

m How we can ensure (**)?



Updating estimating sequences

Let ¢o(x) = 5[Ix —x°||%, Ao = 1, {y*¥}32, is a sequence in Q, and

{artizy : ak €(0,1), ki—.éoak =00. Then {¢x(x)}220, {Ac}ilo:
Akt1 = (1 = ax) Ak,
Prr1(x) = (1 — an)puc(x) + awlF(y*) + (F/(y*), x = y*)]
are estimating sequences.

Proof: ¢o(x) < (1 — Ao)f(x) + Aodo(x) = ¢o(x).
If (*) holds for some k > 0, then

Pr1(x) < (1 — )i (x) + awf(x)
= (1= (1= ar)M)f(x) + (1 = ak)(Px(x) — (1 = M) f(x))
< (1= (L= ar)A)f(x) + (1 — ak)Akdo(x)
= (1= A1) f(x) + Akga1go(x). O



Updating the points

Denote ¢} = m|n br(x), vk = = argn m|n ®k(x). Suppose

o > F(x9).
Phs1 = Min {(1 — ) k(x) + arlf(y*) + (F'(y* Yyl >

mm{u—auwk + 24— WWLHMVUU+«my»y—yﬂ}

> min{f(y*) + E=ewely ey, 12
x€Q

(), arlx = y4) + (1= an)(x* = y9)))
(vk def (1- ak)xk + agvk = xk + ak(vk — Xk))
= min{f(y*) + B8 o — w2+ (1 (y4), x = v4))

_ N @
= min A9+ Oy - 2 () y - 9} 2 R

y=xk oy (x—xk)
xEQ
2

Answer: aj = (1 — ) k- xkv1 = Tr(yw)-



Optimal method

Choose V0 = x% € Q, Ao = 1, ¢o(x) = 5 x — x0|2.

For k > 0 iterate:

m Compute ay : ai = (1 — ak) Ak = Ay
m Define y, = (1 — ay)x¥ + apvk.
m Compute x*T1 = T, (y%).

m Prer(x) = (1= aw)du(x) + aulF(y*) + (F(y ), x = y*)].

Convergence: Denote a; = )\;1/2. Then

1/2_41/2 Y [V
Ak+1—ak = k1/2 11;;1 = 11/2 1/57 1%1 /2 — 1k/+21 = oClk/z = %
AT AN WAL 2N 2N

Thus, ax > 1+ g Hence, A\ < ﬁ.



Interpretation

1. ¢k(x) accumulates all previously computed information about
the objective. This is a current model of our problem.
2. vk =arg mig ¢k (x) is a prediction of the optimal strategy.

NS

3. ¢} = di(vk) is an estimate of the optimal value.

4. Acceleration condition: f(xK) < ¢%. We need a firm, which
is at least as good as the best theoretical prediction.

5. Then we create a startup y* = (1 — ay)x* + axvk, and allow it
to work one year.

6. Theorem: Next year, its performance will be at least as good
as the new theoretical prediction. And we can continue!

Acceleration result: 10 years instead 100.

Who is in a right position to arrange 57 Government, political
institutions.



	Basic NP-hard problem
	NP-hardness of some popular problems
	Lower complexity bounds for Global Minimization
	Nonsmooth Convex Minimization. Subgradient scheme.
	Smooth Convex Minimization. Lower complexity bounds
	Methods for Smooth Minimization with Simple Constraints

