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Nonsmooth Unconstrained Optimization

Problem: min { f(x): xe R"} = x* f*=f(x"),
where f(x) is a nonsmooth convex function.

Subgradients: g € 0f(x) < f(y) > f(x) + (g,y —x) Vy e R".

Main difficulties:

m g € Of(x) is not a descent direction at x.

m g € Of(x*) does not imply g = 0.

f(x) = @agxm{@j,X) + bj},

0f(x) = Conv {a; : (aj,x) + bj = f(x)}.




Subgradient methods in Nonsmooth Optimization

m Very simple iteration scheme.
= Low memory requirements.
m Optimal rate of convergence (uniformly in the dimension).

m Interpretation of the process.

m Low rate of convergence. (Confirmed by theory!)

m No acceleration.

m High sensitivity to the step-size strategy.



Lower complexity bounds

Nemirovsky, Yudin 1976

If f(x) is given by a local black-box, it is impossible to converge
faster than O (\%) uniformly in n. (k is the # of calls of oracle.)

NB: Convergence is very slow.

Question: We want to find an e-solution of the problem
; b} — in: R"
1g%xm{<aj,x> + bj} min : x € R”,
by a gradient scheme (n and m are big).
What is the worst-case complexity bound?

“Right answer” (Complexity Theory): O (%) calls of oracle.

Our target: A gradient scheme with O (%) complexity bound.

Reason of speed up: our problem js not in a black box.



Complexity of Smooth Minimization

Problem: f(x) — min: x € R" , where f is a convex function
and ||[Vf(x) — VI(y)|l« < L(f)|[x — y] for all x,y € R".

(For measuring gradients we use dual norms: ||s||« = HmHa (s,x).)
x||=1

Rate of convergence: Optimal method gives O (%)

€

Complexity: O ( L(f)) The difference with O (6%) is very big.



Smoothing the convex function

For function f define its Fenchel conjugate:
£(s) = max(s.x) — F()].
xeR"
It is a closed convex function with dom f, = Conv{f’(x) : x € R"}.
Moreover, under very mild conditions (£.(s)). = f(x).
Define f,(x) = max_[(s,x) — fi(s) — &||s[|2], where || - || is a
s€dom fi

Euclidean norm.
Note:  f(x) = su(x), and x = f/(su(x)) + psu(x). Therefore,

It = x12 = [I£(s") — £(2)|? + 2u{fi(sT) — £i(s?), 5" = 5?)
2”2 2”2_

+Pllst = PP > pPst s

Thus, f, € Cl/1 and f(x) > f,(x) > f(x) — uD?,

where D = Diam(dom ).



Main questions

1. Given by a non-smooth convex f(x), can we form its
computable smooth e-approximation f.(x) with

L(f) =0 (2)?

If yes, we need only O ( L(Efe)> =0 (%) iterations.

2. Can we do this in a systematic way?

Conclusion: We need a convenient model of our problem.



Adjoint problem

Primal problem: Find f* = min{f(x): x € Q;}, where

@1 C E7 is convex closed and boﬁnded.

Objective: f(x) = f(x)+ mﬁx{(Ax, wo—@(u): ue Q}, where
m 7(x) is differentiable and convex on Q.
m @ C E is a closed convex and bounded.
m ¢(u) is continuous convex function on Q.

m linear operator A: Ey — EJ.
Adjoint problem: max{¢(u) : u € @}, where
(u) = —(u) + min{(Ax, u)2 + F(x) : x € Qu}.

NB: Adjoint problem is not unique!



Example

Consider f(x) = max |(aj,x)1 — bj|.
1<j<m
1. Q=E, A=, ¢(u) = fi(u) = max{(u,x)1 — f(x) : x € Ey}
= min § > sibj u= 3 55, > s < 1.
sER™ | i1 j=1 j=1

2. Ex = R™, ¢(u) = (b,u)s, f(x) = max |(a;,x)1 — bj|
1<j<m

— max {i uil(ajsx)1 — b - i|uj| < 1}.

ueRm j=1
3. E, = R?™, qb( ) is a linear, @ is a simplex:
F(x) = max{Z(u — @)X bl (i) = 1, u > 0},
i=1

2
€R2m =

NB: Increase in dim E, decreases the complexity of representation.



Smooth approximations

Prox-function: d>(u) is continuous and strongly convex on Qy:

dQ(V) > dg(u) + (Vdg(u), v — u>2 + %UQHV — uH%
Assume: d(up) = 0 and do(u) > 0 Vu € Qo.
Fix p > 0, the smoothing parameter, and define

fu(x) = mjlx{(Ax, uyo — P(u) — pda(u) : v € @}
Denote by u(x) the solution of this problem.
Theorem: f,(x) is convex and differentiable for x € E;. lIts
gradient Vf,(x) = A*u(x) is Lipschitz continuous with

L(f.) = %HAH%z

where [[All12 = Tix{(Ax, uya: |Ix|li =1, |ull2 = 1}.

NB: 1. For any x € E; we have fo(x) > f,(x) > fo(x) — uDy,
where Dy = max{d>(u) : v € Q}.

2. All norms are very important.



Optimal method

Problem: min{f(x): x € @} with f € C11(Qy).
Prox-function: strongly convex di(x), di(x°) =0, di(x) >0,
X € Ql.

Gradient mapping:
Ti(x) = arg min {(VF(x),y = x)1 + 3Llly = |13}

Method. For k > 0 do:
1. Compute f(x¥), V£(x).
2. Find y* = Ty (x5).

k. .
3. Find zK = arg micr; {@dl(x) + Y BHVF(x), x)1}-
xeW1 i=0
4. Set xk+1 = ﬁzk + %yk.

Convergence: f(y*) — f(x*) < SLAAB0OT) \yhere x* is the

— O’1(k+1)2 !
optimal solution.



Applications

Smooth problem: f,(x) = f(x) + f,(x) — min: x € Q.

F(x
Lipschitz constant: L, = L(f) +
D; = m)?x{dl( x): x € Q}.

Theorem: Let us choose N > 1. Define

2||All1, /' D
:u’::u’(N): |I|V—}|-|i2 ’ 010'21D2'

After N iterations set X = yN € Q; and
2(i+1) j
‘(N+(1’)(‘N+2*) u(x') € Qz.
=0
. A 4)|A 4L(f)D
Then 0 < (%) — ¢(@1) < |,|Vﬂi’2 Y 21522 + gl.((Nlll)z.

Corollary. Let L(?) = 0. For getting an e-solution, we choose

2
_ e _ Db, Al DiD, 1
B= 2Dy L= 207 e N > 4HAH172 o102 €

WQHAHM Denote

0=

Mz




Example: Equilibrium in matrix games (1)

Denote A, = {x € R": x>0, > x) =1}. Consider the

!
problem min urgg);{(Ax, u)2 + (¢, x)1 + (b, u)2}.

Minimization form:
min F(x), £(x) = (€)1 + max [(3;, )1 + b,
max P(u),  o(u) = (b,u)>+ 121’,2”[(3/7 u)2 + cil,
where a; are the rows and 3; are the columns of A.
1. Euclidean distance: lﬁet us take .
IXIF =2 %, lull3 =X of,
i=1 j=1
di(x) = 3lx — tenlli, dao(u) = 3]u— %emll3.

1/2 2T
Then [|All12 = AW(ATA) and  £(8) — ¢(2) < P2 A)



Example: Equilibrium in matrix games (2)

2. Entropy distance. Let us choose

n n
Ixll =22 [xil,  di(x) =Inn+ > xiInx,
i=1 i=1

m m
ull2 = .Zl|uf" da(u) =Inm+ Zluj-lnuj.
J= j=

n o
LM: 01 = = 1. (Hint: (d(x)h, h) = 3 % min = |[[|3.)
i=1 " P(SIAVY
Moreover, since D1 = Inn, D> = Inm, and
[All1,2 = max{ max [(a;,x)| - [|x[ls = 1} = max|Aj;],
x 1<j<m 2Y)

we have £(8) — 6() < /R - max| Ay

NB: 1. Usually max |A;j| << AMZ(ATA).
i

2. We have ?ﬂ(x) = {c,x)1 + pIn <;7 S e[<3j’X>+bj]/u)_
j=1



Part |l: Interior Point Methods

Black-Box Methods: Main assumptions represent the bounds for
the size of certain derivatives.

Example

2

X

Consider the function f(xi,xp) = ¢ ' >0

0, X1 = Xop = 0.

It is closed, convex, but discontinuous at the origin.

|

However, its epigraph {x € R3: x;x3 > x3} is a simple convex set:
X1 =U1+ U3, Xo =Up, X3 =U] — U3 = U] > ,/u%—kug.
(Lorentz cone)

Question: Can we always replace the functional components by
convex sets?



Standard formulation

Problem: f* = min (c,x),

x€Q
where Q C E is a closed convex set with nonempty interior.
How we can measure the quality of x € Q7?

1. The residual (c,x) — f* is not very informative since it does
not depend on position of x inside Q.

2. The boundary of a convex set can be very complicated.

3. It is easy to travel inside provided that we keep a sufficient
distance to the boundary.

Conclusion: we need a barrier function f(x):
m dom f = int Q,
m f(x) = oc0ast— Q.



Path-following method

Central path: for t > 0 define x*(t), tc+ f'(x*(t))=0

(hence x*(t) = argmin |W(x) o t(c,x) + f(x)} )

Lemma. Suppose (f'(x),y —x) < Afor all x,y € dom Q. Then
(c,x*(t) — x*) = %(f/(x*(t)),x* —x*(t)) < %A.

Method: t; > 0, xk = X*(tk) = tiky1 > by,
XKL x* (k).

For approximating x*(t*1), we need a powerful minimization
scheme.

Main candidate: Newton Method.
(Very good local convergence.)



Classical results on the Newton Method

Method:  xK*1 = xk — [f"(x})]71f/(x¥).
Assume that:

m(x*) >0 1,

m [[f7(x) = (W)l < Mllx =yl ¥x,y € R".

m The starting point x° is close to x*: [|x0 — x* ||< F = 32—,6
Then || x¥ — x* ||< 7 for all k, and the Newton method converges

. . k+1 _ % _ Mk —x*|)2
quadratically: || x XIS s ey
Note:

m The description of the region of quadratic convergence is
given in terms of the metric (-, ).

m The resulting neighborhood is changing when we choose
another metric.



Simple observation

Let f(x) satisfy our assumptions. Consider ¢(y) = f(Ay),
where A is a non-degenerate (n x n)-matrix.

Lemma: Let {x*} be a sequence, generated by Newton Method
for function f.

Consider the sequence {y*}, generated by the Newton Method for
function ¢ with y0 = A=1x0.

Then y* = A=1xk for all k > 0.

Proof: Assume y¥ = A=1xk for some k > 0. Then

PR = I )
— yk _ [ATf/l(Ayk)A]—lATf/(Ayk)
= A7 Ixk — AT (X)L (xF) = ATk O

Conclusion: The method is affine invariant. lts region of
quadratic convergence does not depend on the metric!



What was wrong?

Old assumption: || (x) = f"(y) [<K M || x—y .

Let f € C3(R"). Denote f"'(x)[u] = OI{iLno%[f”(x—i—au) — f"(x)].
This is a matrix!

Then the old assumption is equivalent to: || " (x)[u] |< M || u ||

Hence, at any point x € R" we have
) (") [u]v, v) | M ull - || v |? for all u,v € R™.
Note:
m The LHS of (x) is an affine invariant directional derivative.
m The norm || - || has nothing common with our particular f.

m However, there exists a local norm, which is closely related
to f. Thisis || u [[¢r)= (F"(x)u, u)l/2.

m Let us make a similar assumption in terms of || - ||¢r(,.



Definition of Self-Concordant Function

Let f(x) € C3(dom f) be a closed and convex, with open domain.
Let us fix a point x € dom f and a direction u € R".

Consider the function ¢(x; t) = f(x + tu). Denote
Df (x)[u] = ¢¢(x; 0) = (f'(x), u),
D2 (x)[u, u] = 6(x; 0) = (F"(x)u,u) = u [,
D3 (x)[u, u, u] = ¢tz (x; 0) = (£ (x)[u]u, u).
Def. We call function f self-concordant if the inequality
| D3 () [u, u,u] <2 || u ||f/,( holds for any x € dom f, u € R".
Note:
m We cannot expect that these functions are very common.
m We hope that they are good for the Newton Method.



Examples

1. Linear function is s.c. since f”(x) =0, f’(x) =0
2. Convex quadratic function is s.c. (f"”'(x) =0).
3. Logarithmic barrier for a ray {x > 0}:
f(x)=—Inx, f(x)=-1 f(x)=%, "(x)=-3.

4. Logarithmic barrier for a quadratic region. Consider a concave
function ¢(x) = a + (a,x) — 3(Ax,x). Define f(x) = —In ¢(x).
def
Df (x)[u] = — 55 l{a, u) — (Ax, u)] = w1,

D?f(x)[u]® = ¢2—(X)[<a, u) — (Ax, u)]® + ﬁ(/\u, u),

D3 ()[u]® = — 525 (@, u) — (Ax, )P — 2529 (2, u) — (Ax, u)].

D>, = w% 4wy, D3 = 2(4}% — 3wiws. Hence, |D3| < 2|D2|3/2.



Simple properties

1. If 1, f, are s.c.f., then f; + £ is s.c. function.
2. If f(y) is s.c.f., then ¢(x) = f(Ax + b) is also a s.c. function.
Proof: Denote y = y(x) = Ax+ b, v = Au. Then
Do (x)[u] = (f'(y(x)), Au) = (f'(y), v).
D2p(x)[u]? = (f"(y(x))Au, Au) = (f"(y)v. v),
D3¢(x)[u]® = D3 (y(x))[Au]® = D*f(y)[v]’.00
Example: f(x) = (¢, x) — ; In(a; — ||Aix — b;||?) is a

s.c.-function.



Main properties

Let x e domf and u € R", u# 0. For x + tu € dom f, consider
_ 1
) = a7
Lemma. For all feasible t we have: | ¢'(t) |[< 1.

Proof: Indeed, ¢/(t) = —%- D

Corollary 1: dom ¢ contains the interval (—¢(0), ¢(0)).

Proof: Since f(x + tu) — oo as x + tu — Odom f, the same is
true for (f”(x + tu)u,u). Hence dom ¢(t) = {t | #(t) >0}. O

Denote WO(x;r) ={y € R"| || y — x |lfn(x)< r}. Then
WO(x; r) C dom f for r < 1.
Main Theorem: for any y € W(x;r), r € [0,1), we have

(1= rRF(x) < F'(y) % s F (%),




Local convergence

For x close to x*, f'(x*) =0, function f(x) is almost quadratic:
f(x)~rf*+ %(f”(x*)(x — x*),x — x*).
Therefore, f(x) — f* &~ ||x — X*H%,,(X*) ~ Lx — X*H%,,(X)
— def def
~ S (F L PO (x) = 5P (I = A7 (x).
The last value is the local norm of the gradient. It is computable!
Theorem: Let x € dom f and A¢(x) < 1.
Then the point x; = x — [f”(x)]"}f'(x) belongs to dom f and
2
Ar(x
M) < (£2455)

NB: Region of quadratic convergence is Af(x) < \, =25 = 1.

It is affine-invariant!



Following the cental path

Consider W(x) = t(c, x) + f(x) with s.c. function f.

m For V;, Newton Method has local quadratic convergence.

m The region of quadratic convergence (RQC) is given by
)\\Ut(X) < 6 <A

Assume we know x = x*(t). We want to update t, t; =t + A,
keeping x in RQC of function Wi a1 Ay, A (x) < B.

Question: How large can be A? Since tc + f'(x) = 0, we have:
k * A k
Ao () =l tre+ F() = AL | e [l3="21 1 F(x) < 8.
Conclusion: for the linear rate, we need to assume that
([F"(x)]71F'(x), f'(x)) is uniformly bounded on dom f.

Thus, we come to the definition of self~concordant barrier.



Definition of Self-Concordant Barrier

Let F(x) be a s.c.-function. It is a v-self-concordant barrier, if
max [2(F'(x),u) — (F"(x)u, u)] < v for all x € dom F.

The value v is called the parameter of the barrier.

If F”(x) is non-degenerate, then (F'(x),[F"(x)] 1F'(x)) < v.

Another form: (F'(x), u)? < v{F"(x)u, u).

Main property: (F'(x),y —x) <v, x,y € int Q.

NB: v is responsible for the rate of p.-f. method: t; =t + VO;—/Q

Complexity: O (y/vInY) iterations of the Newton method.

Calculus: 1. Affine transformations do not change v.

2. Restriction on a subspace can only decrease v.

3. F=FR+F = v=uv1+1s.



Examples

1. Barrier for aray: F(t) = —Int, F'(t) = —%, F"(t) = ?12 v=1.
2. Polytop {x : (a1, x) < bi}, F(x) = — 3. In(b; — (a,x)), v = m.
3. h-ball: F(x) = —In(1 — ||x|]2), Ds ' on Dy = W2 fws v =1.
4. Intersection of ellipsoids: F(x) = — i In(r? — ||Aix — bi||?),
v=m. =

5. Lorentz cone {t > ||x||}, F(x,t) = —In(t? — ||x]|?), v = 2.

6. LMI-cone {X = X7 =0}, F(X) = —Indet X, v = n.

7. Epigraph {t > e*}, F(x,t) = —In(t —€*) —In(Int — x), v = 4.
8.

Universal barrier. Define the polar set
P(X):{S: <57y_X> < 17 ye Q}
Then F(x) = —Invol,P(x) is an O(n)-s.c. barrier for Q.



Further directions: specification of the model description

Path-following methods

m Conic problems. Gain: primal-dual IPM.
m Self-scaled cones: F.(F"(x)u) = F(u) —2F(x) — v. Gain:
long-step methods, very good search directions.

m Positive polynomials: p(t) >0, t€ Riff pp= > YV,
i+j=k
Y > 0. Gain: very cheap computation of determinants.

Black-box methods

m Composite functions: f(x) + h(x), where f is smooth but
complex, and h is nonsmooth and simple. Gain: rate O(Flg)

m Huge-scale problem: very sparse linear operators. Gain:
extremely cheap iterations. (Next Lecture.)
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