Lecture 2: Looking into the Black Box. Structural Optimization.

Yurii Nesterov, CORE/INMA (UCL)

September 8, 2012

Outline

- 1 Nonsmooth Optimization
- 2 Smoothing technique
- 3 Application examples
- 4 Interior-point methods: standard problem
- 5 Newton method
- 6 Self-concordant functions and barriers
- 7 Application examples
- 8 Further directions

Nonsmooth Unconstrained Optimization

Problem: min $\{ f(x) : x \in \mathbb{R}^n \} \Rightarrow x^*, f^* = f(x^*),$ where f(x) is a nonsmooth convex function.

Subgradients: $g \in \partial f(x) \Leftrightarrow f(y) \geq f(x) + \langle g, y - x \rangle \quad \forall y \in R^n$.

Main difficulties:

- $g \in \partial f(x)$ is *not* a descent direction at x.
- $g \in \partial f(x^*)$ does not imply g = 0.

Example

$$f(x) = \max_{1 \le j \le m} \{ \langle a_j, x \rangle + b_j \},$$

$$\partial f(x) = \text{Conv } \{ a_j : \langle a_j, x \rangle + b_j = f(x) \}.$$

Subgradient methods in Nonsmooth Optimization

Advantages

- Very simple iteration scheme.
- Low memory requirements.
- Optimal rate of convergence (uniformly in the dimension).
- Interpretation of the process.

Objections:

- Low rate of convergence. (Confirmed by theory!)
- No acceleration.
- High sensitivity to the step-size strategy.

Lower complexity bounds

Nemirovsky, Yudin 1976

If f(x) is given by a local *black-box*, it is impossible to converge faster than $O\left(\frac{1}{\sqrt{k}}\right)$ <u>uniformly in n</u>. (k is the # of calls of oracle.)

NB: Convergence is very slow.

Question: We want to find an ϵ -solution of the problem

$$\max_{1 < j < m} \{ \langle a_j, x \rangle + b_j \} \quad \to \quad \min_{x} : x \in \mathbb{R}^n,$$

by a gradient scheme (n and m are big).

What is the worst-case complexity bound?

"Right answer" (Complexity Theory): $O\left(\frac{1}{\epsilon^2}\right)$ calls of oracle.

Our target: A gradient scheme with $O\left(\frac{1}{\epsilon}\right)$ complexity bound.

Reason of speed up: our problem <u>is not</u> in a black box.

Complexity of Smooth Minimization

Problem: $f(x) \to \min_{x} : x \in \mathbb{R}^n$, where f is a convex function and $\|\nabla f(x) - \nabla f(y)\|_* \le L(f)\|x - y\|$ for all $x, y \in \mathbb{R}^n$.

(For measuring gradients we use dual norms: $\|s\|_* = \max_{\|x\|=1} \langle s, x \rangle$.)

Rate of convergence: Optimal method gives $O\left(\frac{L(f)}{k^2}\right)$.

Complexity: $O\left(\sqrt{\frac{L(f)}{\epsilon}}\right)$. The difference with $O\left(\frac{1}{\epsilon^2}\right)$ is very big.

Smoothing the convex function

For function *f* define its Fenchel conjugate:

$$f_*(s) = \max_{x \in R^n} [\langle s, x \rangle - f(x)].$$

It is a closed convex function with $\operatorname{dom} f_* = \operatorname{Conv}\{f'(x) : x \in R^n\}.$

Moreover, under very mild conditions $(f_*(s))_* \equiv f(x)$.

Define $f_{\mu}(x) = \max_{s \in \text{dom } f_*} [\langle s, x \rangle - f_*(s) - \frac{\mu}{2} \|s\|_*^2]$, where $\|\cdot\|_*$ is a Euclidean norm.

Note:
$$f'_{\mu}(x) = s_{\mu}(x)$$
, and $x = f'_{*}(s_{\mu}(x)) + \mu s_{\mu}(x)$. Therefore, $\|x^{1} - x^{2}\|^{2} = \|f'_{*}(s^{1}) - f'_{*}(s_{2})\|^{2} + 2\mu \langle f'_{*}(s^{1}) - f'_{*}(s^{2}), s^{1} - s^{2} \rangle + \mu^{2} \|s^{1} - s^{2}\|^{2} \ge \mu^{2} \|s^{1} - s^{2}\|^{2}$.

Thus, $f_{\mu} \in C_{1/\mu}^{1,1}$ and $f(x) \ge f_{\mu}(x) \ge f(x) - \mu D^2$, where $D = \text{Diam}(\text{dom } f_*)$.

Main questions

1. Given by a non-smooth convex f(x), can we form its computable smooth ϵ -approximation $f_{\epsilon}(x)$ with

$$L(f_{\epsilon}) = O\left(\frac{1}{\epsilon}\right)$$
?

If yes, we need only $O\left(\sqrt{\frac{L(f_{\epsilon})}{\epsilon}}\right) = O\left(\frac{1}{\epsilon}\right)$ iterations.

2. Can we do this in a systematic way?

Conclusion: We need a convenient model of our problem.

Adjoint problem

Primal problem: Find $f^* = \min_x \{ f(x) : x \in Q_1 \}$, where $Q_1 \subset E_1$ is convex closed and bounded.

Objective: $f(x) = \hat{f}(x) + \max_{u} \{ \langle Ax, u \rangle_2 - \hat{\phi}(u) : u \in Q_2 \}, \text{ where }$

- $\hat{f}(x)$ is differentiable and convex on Q_1 .
- $Q_2 \subset E_2$ is a closed convex and bounded.
- $\hat{\phi}(u)$ is continuous convex function on Q_2 .
- linear operator $A: E_1 \rightarrow E_2^*$.

Adjoint problem: $\max_{u} \{\phi(u): u \in Q_2\}$, where $\phi(u) = -\hat{\phi}(u) + \min_{x} \{\langle Ax, u \rangle_2 + \hat{f}(x): x \in Q_1\}.$

NB: Adjoint problem is not unique!

Example

Consider
$$f(x) = \max_{1 \le j \le m} |\langle a_j, x \rangle_1 - b_j|$$
.

1.
$$Q_2 = E_1^*$$
, $A = I$, $\hat{\phi}(u) \equiv f_*(u) = \max_{x} \{ \langle u, x \rangle_1 - f(x) : x \in E_1 \}$

$$= \min_{s \in R^m} \left\{ \sum_{j=1}^m s_j b_j : u = \sum_{j=1}^m s_j a_j, \sum_{j=1}^m |s_j| \le 1 \right\}.$$

2.
$$E_2 = R^m$$
, $\hat{\phi}(u) = \langle b, u \rangle_2$, $f(x) = \max_{1 \le j \le m} |\langle a_j, x \rangle_1 - b_j|$
= $\max_{u \in R^m} \left\{ \sum_{j=1}^m u_j [\langle a_j, x \rangle_1 - b_j] : \sum_{j=1}^m |u_j| \le 1 \right\}$.

3. $E_2 = R^{2m}$, $\hat{\phi}(u)$ is a linear, Q_2 is a simplex:

$$f(x) = \max_{u \in R^{2m}} \{ \sum_{j=1}^{m} (u_j^1 - u_j^2) [\langle a_j, x \rangle_1 - b_j] : \sum_{j=1}^{m} (u_j^1 + u_j^2) = 1, \ u \ge 0 \}.$$

NB: Increase in dim E_2 decreases the complexity of representation.

Smooth approximations

Prox-function: $d_2(u)$ is continuous and *strongly convex* on Q_2 :

$$d_2(v) \ge d_2(u) + \langle \nabla d_2(u), v - u \rangle_2 + \frac{1}{2} \sigma_2 ||v - u||_2^2.$$

Assume: $d_2(u_0) = 0$ and $d_2(u) \ge 0 \ \forall u \in Q_2$.

Fix $\mu > 0$, the *smoothing* parameter, and define $f_{\mu}(x) = \max\{\langle Ax, u \rangle_2 - \hat{\phi}(u) - \mu d_2(u) : u \in Q_2\}.$

Denote by u(x) the solution of this problem.

Theorem: $f_{\mu}(x)$ is convex and differentiable for $x \in E_1$. Its gradient $\nabla f_{\mu}(x) = A^* u(x)$ is Lipschitz continuous with

$$L(f_{\mu}) = \frac{1}{\mu \sigma_2} ||A||_{1,2}^2,$$

where $||A||_{1,2} = \max_{x,u} \{ \langle Ax, u \rangle_2 : ||x||_1 = 1, ||u||_2 = 1 \}.$

NB: 1. For any $x \in E_1$ we have $f_0(x) \ge f_{\mu}(x) \ge f_0(x) - \mu D_2$, where $D_2 = \max_{u} \{d_2(u) : u \in Q_2\}$.

2. All norms are very important.

Optimal method

Problem: $\min_{x} \{ f(x) : x \in Q_1 \}$ with $f \in C^{1,1}(Q_1)$.

Prox-function: strongly convex $d_1(x)$, $d_1(x^0) = 0$, $d_1(x) \ge 0$, $x \in Q_1$.

Gradient mapping:

$$T_L(x) = \arg\min_{y \in Q_1} \left\{ \langle \nabla f(x), y - x \rangle_1 + \frac{1}{2} L \|y - x\|_1^2 \right\}.$$

Method. For $k \ge 0$ do:

- **1.** Compute $f(x^k)$, $\nabla f(x^k)$.
- **2.** Find $y^k = T_{L(f)}(x^k)$.
- **3.** Find $z^k = \arg\min_{x \in Q_1} \{ \frac{L(f)}{\sigma} d_1(x) + \sum_{i=0}^k \frac{i+1}{2} \langle \nabla f(x^i), x \rangle_1 \}.$
- **4.** Set $x^{k+1} = \frac{2}{k+3}z^k + \frac{k+1}{k+3}y^k$.

Convergence: $f(y^k) - f(x^*) \le \frac{4L(f)d_1(x^*)}{\sigma_1(k+1)^2}$, where x^* is the optimal solution.

Applications

Smooth problem: $\bar{f}_{\mu}(x) = \hat{f}(x) + f_{\mu}(x) \rightarrow \min : x \in Q_1.$

Lipschitz constant: $L_{\mu} = L(\hat{f}) + \frac{1}{\mu\sigma_2} ||A||_{1,2}^2$. Denote

 $D_1 = \max_{x} \{ d_1(x) : x \in Q_1 \}.$

Theorem: Let us choose $N \ge 1$. Define

$$\mu = \mu(N) = \frac{2\|A\|_{1,2}}{N+1} \cdot \sqrt{\frac{D_1}{\sigma_1 \sigma_2 D_2}}.$$

After N iterations set $\hat{x} = y^N \in Q_1$ and

$$\hat{u} = \sum_{i=0}^{N} \frac{2(i+1)}{(N+1)(N+2)} \ u(x^i) \in Q_2.$$

Then
$$0 \le f(\hat{x}) - \phi(\hat{u}) \le \frac{4\|A\|_{1,2}}{N+1} \cdot \sqrt{\frac{D_1 D_2}{\sigma_1 \sigma_2}} + \frac{4L(\hat{t})D_1}{\sigma_1 \cdot (N+1)^2}$$
.

Corollary. Let $L(\hat{f}) = 0$. For getting an ϵ -solution, we choose

$$\mu = \frac{\epsilon}{2D_2}, \quad L = \frac{D_2}{2\sigma_2} \cdot \frac{\|A\|_{1,2}^2}{\epsilon}, \quad N \ge 4\|A\|_{1,2} \sqrt{\frac{D_1 D_2}{\sigma_1 \sigma_2}} \cdot \frac{1}{\epsilon}.$$

Example: Equilibrium in matrix games (1)

Denote
$$\Delta_n = \{x \in R^n : x \ge 0, \sum_{i=1}^n x^{(i)} = 1\}$$
. Consider the problem $\min_{x \in \Delta_n} \max_{u \in \Delta_m} \{\langle Ax, u \rangle_2 + \langle c, x \rangle_1 + \langle b, u \rangle_2\}$.

Minimization form:

$$\min_{x \in \Delta_n} f(x), \quad f(x) = \langle c, x \rangle_1 + \max_{1 \le j \le m} [\langle a_j, x \rangle_1 + b_j],$$

$$\max_{u \in \Delta_m} \phi(u), \quad \phi(u) = \langle b, u \rangle_2 + \min_{1 \le i \le n} [\langle \hat{a}_i, u \rangle_2 + c_i],$$

where a_j are the rows and \hat{a}_i are the columns of A.

1. Euclidean distance: Let us take

$$||x||_1^2 = \sum_{i=1}^n x_i^2, \quad ||u||_2^2 = \sum_{j=1}^m u_j^2,$$

$$d_1(x) = \frac{1}{2} ||x - \frac{1}{n}e_n||_1^2, \quad d_2(u) = \frac{1}{2} ||u - \frac{1}{m}e_m||_2^2.$$

Then
$$||A||_{1,2} = \lambda_{\max}^{1/2}(A^TA)$$
 and $f(\hat{x}) - \phi(\hat{u}) \le \frac{4\lambda_{\max}^{1/2}(A^TA)}{N+1}$.

Example: Equilibrium in matrix games (2)

2. Entropy distance. Let us choose

$$||x||_1 = \sum_{i=1}^n |x_i|, \quad d_1(x) = \ln n + \sum_{i=1}^n x_i \ln x_i,$$

 $||u||_2 = \sum_{j=1}^m |u_j|, \quad d_2(u) = \ln m + \sum_{j=1}^m u_j \ln u_j.$

LM:
$$\sigma_1 = \sigma_2 = 1$$
. (Hint: $\langle d_1''(x)h, h \rangle = \sum_{i=1}^n \frac{h_i^2}{x_i} \to \min_{x \in \Delta_n} = \|h\|_1^2$.)

Moreover, since $D_1 = \ln n$, $D_2 = \ln m$, and

$$\|A\|_{1,2} = \max_{x} \{ \max_{1 \leq j \leq m} |\langle a_j, x \rangle| : \ \|x\|_1 = 1 \} = \max_{i,j} |A_{i,j}|,$$

we have $f(\hat{x}) - \phi(\hat{u}) \leq \frac{4\sqrt{\ln n \ln m}}{N+1} \cdot \max_{i,j} |A_{i,j}|$.

NB: 1. Usually
$$\max_{i,j} |A_{i,j}| \ll \lambda_{\max}^{1/2}(A^T A)$$
.

2. We have
$$\overline{f}_{\mu}(x) = \langle c, x \rangle_1 + \mu \ln \left(\frac{1}{m} \sum_{j=1}^m e^{[\langle a_j, x \rangle + b_j]/\mu} \right)$$
.

Part II: Interior Point Methods

Black-Box Methods: Main assumptions represent the bounds for the size of certain derivatives.

Example

Consider the function
$$f(x_1, x_2) = \begin{cases} \frac{x_2^2}{x_1}, & x_1 > 0, \\ 0, & x_1 = x_2 = 0. \end{cases}$$

It is closed, convex, but discontinuous at the origin.

However, its epigraph $\{x \in R^3 : x_1x_3 \ge x_2^2\}$ is a simple convex set: $x_1 = u_1 + u_3, \ x_2 = u_2, \ x_3 = u_1 - u_3 \ \Rightarrow \ u_1 \ge \sqrt{u_2^2 + u_3^2}.$ (Lorentz cone)

Question: Can we always replace the functional components by convex sets?

Standard formulation

Problem: $f^* = \min_{x \in Q} \langle c, x \rangle$,

where $Q \subset E$ is a closed convex set with nonempty interior.

How we can measure the quality of $x \in Q$?

- 1. The residual $\langle c, x \rangle f^*$ is not very informative since it does not depend on *position* of x inside Q.
- 2. The boundary of a convex set can be very complicated.
- **3.** It is easy to travel inside provided that we keep a sufficient distance to the boundary.

Conclusion: we need a barrier function f(x):

- lacksquare dom $f = \operatorname{int} Q$,
- $f(x) \to \infty$ as $t \to \partial Q$.

Path-following method

Central path: for
$$t > 0$$
 define $x^*(t)$, $tc + f'(x^*(t)) = 0$
 $\left(\text{hence } x^*(t) = \arg\min\left[\Psi_t(x) \stackrel{\text{def}}{=} t\langle c, x \rangle + f(x)\right].\right)$

Lemma. Suppose $\langle f'(x), y - x \rangle \leq A$ for all $x, y \in \text{dom } Q$. Then $\langle c, x^*(t) - x^* \rangle = \frac{1}{t} \langle f'(x^*(t)), x^* - x^*(t) \rangle \leq \frac{1}{t} A$.

Method:
$$t_k > 0$$
, $x^k \approx x^*(t_k) \Rightarrow t_{k+1} > t_k$, $x^{k+1} \approx x^*(t^{k+1})$.

For approximating $x^*(t^{k+1})$, we need a powerful minimization scheme.

Main candidate: Newton Method. (Very good local convergence.)

Classical results on the Newton Method

Method:
$$x^{k+1} = x^k - [f''(x^k)]^{-1}f'(x^k).$$

Assume that:

- $f''(x^*) \ge \ell \cdot I_n$
- $||f''(x) f''(y)|| \le M||x y||, \ \forall x, y \in R^n.$
- The starting point x^0 is close to x^* : $||x^0 x^*|| < \overline{r} = \frac{2\ell}{3M}$.

Then $\|x^k - x^*\| < \overline{r}$ for all k, and the Newton method converges quadratically: $\|x^{k+1} - x^*\| \le \frac{M\|x^k - x^*\|^2}{2(\ell - M\|x^k - x^*\|)}$.

Note:

- The description of the *region of quadratic convergence* is given in terms of the metric $\langle \cdot, \cdot \rangle$.
- The resulting neighborhood is changing when we choose another metric.

Simple observation

Let f(x) satisfy our assumptions. Consider $\phi(y) = f(Ay)$, where A is a non-degenerate $(n \times n)$ -matrix.

Lemma: Let $\{x^k\}$ be a sequence, generated by Newton Method for function f.

Consider the sequence $\{y^k\}$, generated by the Newton Method for function ϕ with $y^0 = A^{-1}x^0$.

Then $y^k = A^{-1}x^k$ for all $k \ge 0$.

Proof: Assume $y^k = A^{-1}x^k$ for some $k \ge 0$. Then

$$y^{k+1} = y^k - [\phi''(y^k)]^{-1}\phi'(y^k)$$

= $y^k - [A^Tf''(Ay^k)A]^{-1}A^Tf'(Ay^k)$
= $A^{-1}x^k - A^{-1}[f''(x^k)]^{-1}f'(x^k) = A^{-1}x^{k+1}$.

Conclusion: The method is *affine invariant*. Its region of quadratic convergence *does not depend on the metric*!

What was wrong?

Old assumption: $|| f''(x) - f''(y) || \le M || x - y ||$.

Let
$$f \in C^3(\mathbb{R}^n)$$
. Denote $f'''(x)[u] = \lim_{\alpha \to 0} \frac{1}{\alpha} [f''(x + \alpha u) - f''(x)]$.

This is a matrix!

Then the old assumption is equivalent to: $|| f'''(x)[u] || \le M || u ||$.

Hence, at any point $x \in \mathbb{R}^n$ we have

$$(*): \quad |\langle f'''(x)[u]v,v\rangle| \leq M \parallel u \parallel \cdot \parallel v \parallel^2 \text{ for all } u,v \in R^n.$$

Note:

- The LHS of (*) is an *affine invariant* directional derivative.
- The norm $\|\cdot\|$ has nothing common with our particular f.
- However, there exists a local norm, which is closely related to f. This is $||u||_{f''(x)} = \langle f''(x)u,u\rangle^{1/2}$.
- Let us make a similar assumption in terms of $\|\cdot\|_{f''(x)}$.

Definition of Self-Concordant Function

Let $f(x) \in C^3(\text{dom } f)$ be a *closed and convex*, with *open* domain. Let us fix a point $x \in \text{dom } f$ and a direction $u \in R^n$.

Consider the function $\phi(x;t) = f(x + tu)$. Denote

$$Df(x)[u] = \phi'_t(x;0) = \langle f'(x), u \rangle,$$

$$D^2f(x)[u, u] = \phi''_{tt}(x;0) = \langle f''(x)u, u \rangle = ||u||^2_{f''(x)},$$

$$D^3f(x)[u, u, u] = \phi'''_{ttt}(x;0) = \langle f'''(x)[u]u, u \rangle.$$

Def. We call function f self-concordant if the inequality $|D^3f(x)[u,u,u]| \le 2 ||u||_{f''(x)}^3$ holds for any $x \in \text{dom } f$, $u \in R^n$.

Note:

- We cannot expect that these functions are very common.
- We hope that they are good for the Newton Method.

Examples

- 1. Linear function is s.c. since $f''(x) \equiv 0$, $f'''(x) \equiv 0$
- 2. Convex quadratic function is s.c. $(f'''(x) \equiv 0)$.
- 3. Logarithmic barrier for a ray $\{x > 0\}$: $f(x) = -\ln x$, $f'(x) = -\frac{1}{x}$, $f''(x) = \frac{1}{x^2}$, $f'''(x) = -\frac{2}{x^3}$.
- 4. Logarithmic barrier for a quadratic region. Consider a *concave* function $\phi(x) = \alpha + \langle a, x \rangle \frac{1}{2} \langle Ax, x \rangle$. Define $f(x) = -\ln \phi(x)$.

$$Df(x)[u] = -\frac{1}{\phi(x)}[\langle a, u \rangle - \langle Ax, u \rangle] \stackrel{\text{def}}{=} \omega_1,$$

$$D^2f(x)[u]^2 = \frac{1}{\phi^2(x)}[\langle a, u \rangle - \langle Ax, u \rangle]^2 + \frac{1}{\phi(x)}\langle Au, u \rangle,$$

$$D^3f(x)[u]^3 = -\frac{2}{\phi^3(x)}[\langle a, u \rangle - \langle Ax, u \rangle]^3 - \frac{3\langle Au, u \rangle}{\phi^2(x)}[\langle a, u \rangle - \langle Ax, u \rangle].$$

$$D_2 = \omega_1^2 + \omega_2, \ D_3 = 2\omega_1^3 - 3\omega_1\omega_2. \quad \text{Hence, } |D_3| \le 2|D_2|^{3/2}.$$

Simple properties

- **1.** If f_1 , f_2 are s.c.f., then $f_1 + f_2$ is s.c. function.
- **2.** If f(y) is s.c.f., then $\phi(x) = f(Ax + b)$ is also a s.c. function.

Proof: Denote
$$y = y(x) = Ax + b$$
, $v = Au$. Then
$$D\phi(x)[u] = \langle f'(y(x)), Au \rangle = \langle f'(y), v \rangle,$$

$$D^2\phi(x)[u]^2 = \langle f''(y(x))Au, Au \rangle = \langle f''(y)v, v \rangle,$$

$$D^3\phi(x)[u]^3 = D^3f(y(x))[Au]^3 = D^3f(y)[v]^3. \square$$

Example: $f(x) = \langle c, x \rangle - \sum_{i=1}^{m} \ln(a_i - ||A_i x - b_i||^2)$ is a s.c.-function.

Main properties

Let $x \in \text{dom } f$ and $u \in R^n$, $u \neq 0$. For $x + tu \in \text{dom } f$, consider $\phi(t) = \frac{1}{\langle f''(x+tu)u,u \rangle^{1/2}}$.

Lemma. For all feasible t we have: $|\phi'(t)| \leq 1$.

Proof: Indeed,
$$\phi'(t) = -\frac{f'''(x+tu)[u]^3}{2\langle f''(x+tu)u,u\rangle^{3/2}}$$
.

Corollary 1: dom ϕ contains the interval $(-\phi(0), \phi(0))$.

Proof: Since $f(x + tu) \to \infty$ as $x + tu \to \partial \text{dom } f$, the same is true for $\langle f''(x + tu)u, u \rangle$. Hence $\text{dom } \phi(t) \equiv \{t \mid \phi(t) > 0\}$.

Denote
$$W^0(x;r)=\{y\in R^n\mid \|y-x\|_{f''(x)}< r\}$$
. Then
$$W^0(x;r)\subseteq \mathrm{dom}\, f \text{ for } r<1.$$

Main Theorem: for any $y \in W(x; r)$, $r \in [0, 1)$, we have

$$(1-r)^2 F''(x) \leq F''(y) \leq \frac{1}{(1-r)^2} F''(x).$$

Local convergence

For x close to x^* , $f'(x^*) = 0$, function f(x) is almost quadratic: $f(x) \approx f^* + \frac{1}{2} \langle f''(x^*)(x - x^*), x - x^* \rangle$. Therefore, $f(x) - f^* \approx \frac{1}{2} \|x - x^*\|_{f''(x^*)}^2 \approx \frac{1}{2} \|x - x^*\|_{f''(x)}^2 \approx \frac{1}{2} \langle f'(x), [f''(x)]^{-1} f'(x) \rangle \stackrel{\text{def}}{=} \frac{1}{2} (\|f'(x)\|_{*}^*)^2 \stackrel{\text{def}}{=} \lambda_{\ell}^2(x)$.

The last value is the *local norm* of the gradient. It is computable!

Theorem: Let $x \in \text{dom } f$ and $\lambda_f(x) < 1$.

Then the point $x_+ = x - [f''(x)]^{-1} f'(x)$ belongs to $\operatorname{dom} f$ and $\lambda_f(x_+) \leq \left(\frac{\lambda_f(x)}{1 - \lambda_f(x)}\right)^2$.

NB: Region of quadratic convergence is $\lambda_f(x) < \bar{\lambda}$, $\frac{\bar{\lambda}}{(1-\bar{\lambda})^2} = 1$.

It is affine-invariant!

Following the cental path

Consider $\Psi_t(x) = t\langle c, x \rangle + f(x)$ with s.c. function f.

- For Ψ_t , Newton Method has local quadratic convergence.
- The region of quadratic convergence (RQC) is given by $\lambda_{\Psi_t}(x) \leq \beta < \bar{\lambda}.$

Assume we know $x=x^*(t)$. We want to update t, $t_+=t+\Delta$, keeping x in RQC of function $\Psi_{t+\Delta}\colon \lambda_{\Psi_{t+\Delta}}(x)\leq \beta$.

Question: How large can be Δ ? Since tc + f'(x) = 0, we have:

$$\lambda_{\Psi_{t+\Delta}}(x) = ||t_+c + f'(x)||_x^* = |\Delta| \cdot ||c||_x^* = \frac{|\Delta|}{t} ||f'(x)||_x^* \le \beta.$$

Conclusion: for the *linear rate*, we need to assume that $\langle [f''(x)]^{-1}f'(x), f'(x) \rangle$ is *uniformly bounded* on dom f.

Thus, we come to the definition of self-concordant barrier.

Definition of Self-Concordant Barrier

Let F(x) be a s.c.-function. It is a ν -self-concordant barrier, if $\max_{u \in R^n} \left[2\langle F'(x), u \rangle - \langle F''(x)u, u \rangle \right] \le \nu$ for all $x \in \text{dom } F$.

The value ν is called the *parameter* of the barrier.

If F''(x) is non-degenerate, then $\langle F'(x), [F''(x)]^{-1}F'(x)\rangle \leq \nu$.

Another form: $\langle F'(x), u \rangle^2 \le \nu \langle F''(x)u, u \rangle$.

Main property: $\langle F'(x), y - x \rangle \leq \nu$, $x, y \in \text{int } Q$.

NB: ν is responsible for the rate of p.-f. method: $t_+ = t \pm \frac{\alpha \cdot t}{\nu^{1/2}}$.

Complexity: $O\left(\sqrt{\nu}\ln\frac{\nu}{\epsilon}\right)$ iterations of the Newton method.

Calculus: 1. Affine transformations do not change ν .

2. Restriction on a subspace can only decrease ν .

3.
$$F = F_1 + F_2 \implies \nu = \nu_1 + \nu_2$$
.

Examples

- **1.** Barrier for a ray: $F(t) = -\ln t$, $F'(t) = -\frac{1}{t}$, $F''(t) = \frac{1}{t^2}$, $\nu = 1$.
- **2.** Polytop $\{x: \langle a_i, x \rangle \leq b_i\}$, $F(x) = -\sum_{i=1}^m \ln(b_i \langle a_i, x \rangle)$, $\nu = m$.
- **3.** I_2 -ball: $F(x) = -\ln(1 ||x||^2)$, $D_1 = \omega_1$, $D_2 = \omega_1^2 + \omega_2$, $\nu = 1$.
- **4.** Intersection of ellipsoids: $F(x) = -\sum_{i=1}^{m} \ln(r_i^2 ||A_i x b_i||^2)$, $\nu = m$.
- **5.** Lorentz cone $\{t \ge ||x||\}$, $F(x,t) = -\ln(t^2 ||x||^2)$, $\nu = 2$.
- **6.** LMI-cone $\{X = X^T \succeq 0\}$, $F(X) = -\ln \det X$, $\nu = n$.
- 7. Epigraph $\{t \ge e^x\}$, $F(x,t) = -\ln(t e^x) \ln(\ln t x)$, $\nu = 4$.
- **8. Universal barrier.** Define the *polar set* $P(x) = \{s : \langle s, v x \rangle < 1, v \in Q\}.$

Then $F(x) = -\ln \operatorname{vol}_n P(x)$ is an O(n)-s.c. barrier for Q.

Further directions: specification of the model description

Path-following methods

- Conic problems. Gain: primal-dual IPM.
- Self-scaled cones: $F_*(F''(x)u) \equiv F(u) 2F(x) \nu$. Gain: long-step methods, very good search directions.
- Positive polynomials: $p(t) \ge 0$, $t \in R$ iff $p_k = \sum_{i+j=k} Y^{i,j}$, $Y \succeq 0$. Gain: very cheap computation of determinants.

Black-box methods

- Composite functions: f(x) + h(x), where f is smooth but complex, and h is nonsmooth and simple. Gain: rate $O(\frac{1}{L^2})$.
- Huge-scale problem: very sparse linear operators. Gain: extremely cheap iterations. (Next Lecture.)

