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Boolean quadratic problem

Let Q = QT be an (n x n)-matrix.

Maximization: find
*(Q) = max{(Qx,x) : x;==x1, i=1...n}.

Minimization: find £,(Q) = min{(Qx,x) : x; ==£1, i=1...n}.

Clearly f*(-Q) = —£(Q).

Trivial Properties

m Both problems are NP-hard.

m They can have up to 2" local extremums.

Very often we are happy with approximate solutions



Simple bounds: Eigenvalues

Upper bound. For any x € R" with x; = 41, we have ||x||? = n.
Therefore,

Q) < max (Qx,x) = n- Anax(Q).

[Ix[[?=n

Lower bounds. 1. If @ = 0, then

Q) = |nl1|ax<Qx X)) > max, (@x,x) = Amax(@).

2. Consider random x with Prob (x; = 1) = Prob (x; = —1) = 1.
Then

Q) 2 E(@ux) = 3 QuEilxx)

ij=1

= Zn: Qii = Trace(Q).
i=1

Example: Q = ee’, Trace (Q) = Amax(Q) = n. In both cases,
relative quality is n.



Polyhedral bound

For Boolean x € R", We have

def
(@xx) = 3 Quxixg < Z Qi = QL.
ij=1
How good is it?
Random hyperplane technique. (Krivine 70's, Goemans,
Williamson 95)
Let us fix V € M,. Consider the random vector
¢ =sgn[VTu

with random u € R", uniformly distributed on the unit sphere.
([ - ] denotes component-wise operations.)

Lemma 1: E(¢;) = 2 arcsin |I\</,H ||v>,||'

Lemma 2: For X = 0, we have arcsin[X] = X.
Proof: arcsin[X] = X + L [X]P+ [X]°+ ... = X.




Quality of polyhedral bound (@ > 0)

Let Q = VTV (this means that Q;; = (v;,v;)). Then
n P . ij ef
f(Q) > E((Q€.€) = 2 3> QU arcsin < M) =

ij=1
Denote D = diag (Q)~/2. Then p > (Q, DQD)y

Denote S1 = (Q, ln)m, S2 = > |Qij|- Then S1 4+ S = || Q]|1.

i#j
Thus,
DQD)y = S Q> g
(Q,DQD)m = S1 +;§, W,,o“ 1+ > W,,o“
S2
o (= \/Qi) > 514 5t = 10 = S+ o)
The minimum is attained for S = || Q|1 - (1 — %). Thus,

v
QI = F*(Q) > (Q, DRD) i > ﬁll@lh.

It is better than the eigenvalue bound!



SDP-bounds: Primal Relaxation (Lovasz)

For X,Y € M,, we have
(XY, Z)pm = <X,ZYT>M = <Y,XTZ>M.

Denote 1% : (1K), =+1, j=1...n, k=1...2".
Then (Q1%,1%) = (Q,1K(1%)T)ps.  Therefore
F(Q) = max(Q, X)m,
where P, & Conv {15(15)T, k =1...2"}. Note that:
m The complete description of P, is not known.
m For X € P, we have: X =0, and d(X) =1,. Thus,
(Q) < max{(Q,X)m : X = 0,d(X) =1,}.



Dual Relaxation (Shor)

Problem: f*(Q) = max{(Qx, ) : x?=1,i=1...n}h
Its Lagrangian is £(x, &) = (Qx,x) + Z &(1 — (x)?). Therefore
*(Q) = maxmﬁm L(x,€) < m£|n maxE(x €)

= mgm{(ln,@ QR=2D()} = s(Q).

Note: Both relaxations give exactly the same upper bound:
* = mi 1,, X,Q—-D :
#°(Q) = minmax{(1. ) + (X. @ = D(E))w}
= in{{1, — D(X), X, :
maxmin (X),6) + (X, Q)m}

def

— ?§§{<x, Q)rm : d(X) =1,}.

Any hope? (Looks as an attempt to approximate Q by D(¢).)



Trigonometric form of Quadratic Boolean Problem

We have seen that f*(Q) > %arcsin[VTV] with d(VTV) = 1,.
Let us show that

*(Q) = ||mHax 2(Q, arcsin[VT V] .
Proof: Choose arbitrary a, ||al] = 1. Let x* be the global

solution.
Define v; = a if x = 1, and v; = —a otherwise.
Then VTV = x*(x*)T and 2 arcsin[VT V] = x*(x*)7. O
Since {(X=VTV:d(X)=1,} ={X=0: d(X) =1,}, we get
(Q) = r;(qgé({ (Q,arcsin[X])n = d(X) =1,}.

Corollary: s*(Q) > f*(Q) > 25*(Q).

Relative accuracy does not depend on dimension!



General constraints on squared variables

Consider two problems:

¢* = max{{@x,x) : [x]*> € F}, ¢« = min{{Qx,x) : [x]*> € F},
where F is a bounded closed convex set.
Trigonometric form:
¢* = max{2(D(d)QD(d), arcsin[X]) :
X =0, dX)=1,, d>0, [d?<c F},
¢+ = min{2(D(d)QD(d), arcsin[X]) :
X =0, d(X)=1, d>0, [d? e F}.
Relaxations:
Define the support function {(u) = max{(u,v): v € F}, and

Y* = min{¢(v) 1 D(u) = @}, s = max{—£&(u): Q+ D(u) = 0},
™ =¢(d(Q)), 7 =—¢(-d(Q)).

Simple relations: ¥, < ¢, < 7, <7 < ¢*F < Y*.



Main result

*

Denote ¢(a) = ayp™ + (1 — a)yhy, and p* = :f:; By = ;:ﬁ
Theorem. 1. Let

o = max{2w(B.),1 — B*}, and v, = min{l — 2w(B*), B.},
where w(a) = aarcsin(a) + V1 —a2 (> 1+ 1a?).
Then 1, < 6 < w(aw) < ¥(a*) < 6° < 6*.

" —(a®) _ 24
2.0< ) <

: = %9

e s o (2—on)—an lo*—y(a)| ~ 12
3. Deﬁne o = I e P Then W S 37°



Main limitation: Absence of linear constraints

Example. Let 5 > 0. Consider the problem
o = max{(Qx,x) + [ =1, (%) = B},
b0 = min{{Qx,x) + [x = 1o, (c,x) = ).
Natural relaxation:
¥ =max{(Q, X) : d(X) =1n, X = 0,(Xc,c) = 32},
Yo =min{(Q,X) : d(X) =1, X = 0,(Xe,c) = B2},
Denote by v any vector with [v]? = 1,.

Assumptions: 1. There exists a unique v, such that (c, v,) = (.
2. There exist v_ and vy such that 0 < (c,v_) < B < (c, v4).

Note: in this case ¢* = ¢, (unique feasible solution).



Consider the polytope P, = Conv {V; = v;v;/, i =1,...,2"}.

i

Lemma. Any V; is an extreme point of P,. Any pair V;, Vj is
connected by an edge.

Note:

1. In view of our assumption 3V € P,:

V=avv +(1-a)vyv], a€(0,1), (Vc,c)=p2

2. PpoCc{X: d(X)=1,, X =0}

Conclusion: We can choose Q: ¢* > ¢*.

Since ¥, < ¢, the relative accuracy of ¢* is +00.
Reason of the troubles: We intersect edges of Pp,.

This cannot happen if 3 = 0.



Further developments

m Boolean quadratic optimization with m homogeneous linear
equality constraints (accuracy O(In m)).

m Quadratic maximization with quadratic inequality constraints
(accuracy O(In m)).

Main bottleneck: absence of cheap relaxations.



Generating functions of integer sets

1. Primal generating functions.

Forset S C Z", define f(S,x)= >_ x4,
a€eS

where x% = ]2[1 XM
i=
m 1(S,1,) = N(S), the integer volume of S. Can be used for
counting problems.
m Sometimes have short representation.
Example: S={x€ Z: x>0}. Then
f(S,x) = ﬁ



2. Dual generating functions

2.1. Characteristic function of the set X C Z" is defined as
Yx(c)= 3 eleX if X £0, and 0 otherwise.

xeX
m For counting problem, we have N (X) = ¥ x(0).

m We can be approximate the optimal value of an optimization
problem over X:

winax <%c> > m)?x{<c,x) cx e X(y)}
> plinyx (%c) — uIn N (X), p> 0.
2.2. Generating function of family X = {X(y), y e A} Cc Z™
is

defined as  gx o(v) = > ¥x(y(c)- v/
yeA

Dual counting function: fx(v) = gx o(v).

Hope: short representation. NB: Constructed by .set parameters.



Example

Let a € Z!. Consider the Boolean knapsack polytope
Bl»(b) = {x € {0,1}": (a,x) = b}.
Goal: Compute N (Bl"(b)) for a given b € Z,. (It is NP-hard.)

Consider the function  f(z) = [] (1 + za(i)) ,  where
i=1

Z€Cd§f{z€C: |z| =1},
llallx

We will see later, that f(z) = > N(BLl(b)) 2", z €C,
b=0

def & (N
where ||all1 = > [a)].
i=1

Thus, we need to compute the coefficient of z? in polynomial f(z).
For that, we compute all previous coefficients.
Direct computation:  O(nlall1) = O(||all1-In]lall1 - Inn).



Knapsack volumes

Notation: Bl (b)={xeZ": 0<x <u, (a,x) = b}.
Consider the family BY = {BZ(b)}pcz,. Its counting function is
fiu(2) = 5 N (BU(B)) - 20, zecC.
Since u is finite, this is a l;))z?ynomial of degree (a, u).
Lemma. fgu(z) = ﬁ (%) zk"(i)>.
i=1 \ k=0
Proof. For n =1 it is evident.
Denote a; = (a,a™))T € ZI™ and uy = (u, u(rt T € Z0HL,

For any b € Z; we have
u("+1)

N (B3} (b)) = kZ:fO N(Bj(b— k- almtD)).



Hence, in view of the inductive assumption, we have

fng: (Z)

Z N(Bs; (b)) - 2"

5 ((z) N(B3(b - ka(”ﬂ)))) zb

b=0 k=0

0o y(n+1)

S N(Bi(b)) X zbrhke™
b=0 k=0

u(n+1) (nt1)
feu(z)- | > zke . O



Complexity

Lemma. Let polynomial f(z) be represented as a product of

several polynomials:  f(z) = [] pi(z), ze€C.
i=1
Then its coefficients can be computed by FFT in
O(D(f) InD(f) Inn)
arithmetic operations, where D(f) = >_ D(p;).
i=1

Corollary. All (a, u) coefficients of the polynomial fz«(z) can be
computed by FFT in

O({(a, u) In(a, u) Inn) a.o.



Unbounded knapsack

Consider  fiz=(2) = 3. N(B(b)) - 2°
b=0 i
where z € C\ {1}.

Il
I
y
o

Note:
n .
1. The coefficients of the polynomial g(z) = [](1 — za(')) can be
i=1
computed by FFT in O(]|al[1 In]|a]l1 Inn) a.o.

2. After that, the first b+ 1 coefficients of the generating function
faee () can be computed in O(b min{In? b,In? n}) a. o.



Generating functions of knapsack polytopes

For characteristic function ¥x(c) = 3. e{¢¥) of set X, define its
yeX

potential function:  ¢x(c) = Inx(c).
(c

Note that  &x(c) o mea;(((c y) < ¢x(c) < €éx(c) + InN(X).
y

Hence, &x(c) < pox(c/pm) < éx(c)+pumN(X), p>0.

For a family of bounded knapsack polytopes BY = {BY(b)}pez,
the generating function looks as foIIows

g5v.c(2) = biowgau(b)( c) zb= zexp< sun(c) 28, zeC.

n . .
Short representation: ggy (z) = [] (Z eke ')zka()>.
i=1 \ k=0

Unbounded case: g5 (z) = [H (1- ec(i)za(i))]
i=1



Solving integer knapsack

Find "= max{(c,x): (a,x) = b} = Epx(p)(c).

x€Z]
Since f* is an integer value, we need accuracy less than one.

Note that A(B°(b)) < [] (1 + a{’,.)) < (14 b)".
i=1
Thus, if we take p < % In(1+ b), then
—1+ popgep)(c/n) < " < popgew)(c/n)-
For finding coefficient ¢goc(p)(c/11) = exp{dpee(p)(c/1)}, we need

m Compute coefficients of f(z) = [](1 — e/ za(i)).
i=1

m Compute first b+ 1 coefficients of the function g(z) = ﬁ

This can be done in O(||al|; - In]alj1 -Inn 4+ b-In?n) operations
of exact real arithmetics.



Further extensions

Problem: count the number of integer points in the set
X={xeZ": 0<x<f-1,, Ax=be R™},

where |A;j| < a.

Dual counting: O (mn-(1+af-n)™) a.o.

Full enumeration: O (mn-(1+ 5)") a.o.

For fixed m, the first bound is polynomial in n.
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