2. CW-COMPLEXES

Problem 1. Let C be the union of all circles of center (1/n,0) in the xy-plane and radius 1/n. Prove that C is not homeomorphic to a CW-space.

Problem 2. (a) Show that the Cartesian product, the cone, the suspension, and the join of finite CW-complexes have natural CW-complexes structures. (b*) Show that it may be not true for a product of infinite CW-complexes.

Problem 3. Prove that any finite CW-space of dimension n can be embedded into \mathbb{R}^N where N=(n+1)(n+2)/2.

Problem 4. (a) Prove that a CW-space X is connected \Leftrightarrow it is arcwise connected \Leftrightarrow its 1-skeleton is arcwise connected. (b) Prove that a CW-space is compact \Leftrightarrow it contains finitely many cells.

Problem 5. (a) Prove that $\pi_n(X) = \pi_n(\operatorname{sk}_{n+1}(X))$. (b) Prove that $\pi_k(S^n) = 0$ if k < n.

Problem 6. Let S^{∞} be a set of sequences (x_1, x_2, \ldots) where the terms are real numbers, all of them except a finite number being zero, and $\sum_{i=1}^{\infty} x_i^2 = 1$. (a) Construct a CW-structure in S^{∞} . (b) Prove that the identity map id: $S^{\infty} \to S^{\infty}$ is homotopic to the map $\iota: S^{\infty} \to S^{\infty}$ defined by the formula $\iota(x_1, x_2, \ldots) = (0, x_1, x_2, \ldots)$. (c) Prove that S^{∞} is contractible.

Problem 7. Find a CW-structure in the classical surfaces: (a) a torus $S^1 \times S^1$, (b) a sphere with g handles, (c) a Klein bottle, (d) a projective plane, (e) a Klein bottle and a projective plane with g handles, (f) all the examples above with n holes cut out.

Problem 8. Find CW-structures in the spaces X and Y such that the map f is cellular: (a) $X = \mathbb{R}^2 \setminus \{0\}$. $f: X \to S^1$ is the standard retraction. (b) $X = \mathbb{R}P^n$, $f: S^n \to X$ is the 2-fold covering. (c) $X = \mathbb{C}P^n$. $f: S^{2n+1} \to \mathbb{C}P^n$ is the generalized Hopf bundle. (d) $X = S^{\infty}$, $Y = \mathbb{C}P^{\infty}$ (define it!), $f: S^{\infty} \to \mathbb{C}P^{\infty}$ is the infinity-dimensional Hopf bundle. (e) X is the set of unit vectors tangent to the standard S^2 , $Y = S^2$, $f: X \to Y$ is the projection mapping a vector to its attachment point. (f) The same as 8(e) but S^2 is replaced with the sphere with g handles.

1