7. SINGULAR HOMOLOGY

Problem 1. (a) (Alexander) If $A \subset \mathbb{R}^n$ and $B \subset \mathbb{R}^n$ are closed and homeomorphic then $H_k(\mathbb{R}^n \setminus A) \cong H_k(\mathbb{R}^n \setminus B)$. (b) Can one replace \mathbb{R}^n with S^n in the previous statement? (c) (Jordan's lemma in \mathbb{R}^n) If $A \subset \mathbb{R}^n$ is homeomorphic to S^{n-1} , then $\mathbb{R}^n \setminus A$ consists of two connected components.

Problem 2. (a) Let $\Delta_n \stackrel{\text{def}}{=} \{(x_0,\ldots,x_n) \mid x_0,\ldots,x_n \geq 0, x_0+\cdots+x_n=1\}$ be a standard simplex with the vertices $a_i=(0,\ldots,1,\ldots,0)$ (1 at the *i*-th position). Let $K_s\subset\Delta_n\times[0,1]$ be a simplex with the vertices $(a_i,0),$ $s\leq i\leq n$ in $(a_i,1),\ 0\leq i\leq s$. Prove that the simplices K_0,\ldots,K_n have no common internal points and that their union is the whole $\Delta_n\times[0,1]$. (b) Generalize the construction above and describe a splitting of the product $\Delta_n\times\Delta_m$ into simplices ([0,1] is equivalent to the simplex Δ_1).

Problem 3 (Künneth formula). Let $X = \cdots \to X_n \overset{\partial n, X}{\longrightarrow} X_{n-1} \overset{\partial n-1, X}{\longrightarrow} \cdots$ and $Y = \cdots \to Y_n \overset{\partial n, Y}{\longrightarrow} Y_{n-1} \overset{\partial n-1, Y}{\longrightarrow} \cdots$ be complexes of Abelian groups, and $X \otimes Y = \cdots \to X_n \otimes Y_n \overset{\partial n, X \otimes \partial n, Y}{\longrightarrow} X_{n-1} \otimes Y_{n-1} \overset{\partial n-1, X \otimes \partial n-1, Y}{\longrightarrow} \cdots$ be their tensor product. (a) Prove that if X and Y are complexes of vector spaces then $H_*(X \otimes Y) = H_*(X) \otimes H_*(Y)$ (i.e. $H_n(X \otimes Y) = \sum_{k=0}^n H_k(X) \otimes H_{n-k}(Y)$). (b) Prove that in general $H_*(X \otimes Y) = (H_*(X) \otimes H_*(Y)) \oplus G$ for some Abelian group G that depends on $H_*(X)$ and $H_*(Y)$ only. Give an example where G is nontrivial.

Remark. Problem 3 is motivated by the fact that the CW-complex of the product $P \times Q$ of two CW-spaces P and Q is the tensor product of the CW-complexes of P and Q.

Problem 4. Let X be a topological space, and $U_1, \ldots, U_N \subset X$ be its open subsets such that $X = \bigcup_{i=1}^N U_i$ and any finite intersection $U_{i_1} \cap \cdots \cap U_{i_k}$ is either empty or homeomorphic to \mathbb{R}^n . Let $N(U_1, \ldots, U_N)$ be a simplicial complex contatining vertices a_1, \ldots, a_N and a simplex $a_{i_1} \ldots a_{i_k}$ if and only if $U_{i_1} \cap \cdots \cap U_{i_k} \neq \emptyset$. (a) Prove that $N(U_1, \ldots, U_N)$ is homotopy equivalent to X. (b) Is the statement above still true if $U_{i_1} \cap \cdots \cap U_{i_k}$ is allowed to be homeomorphic to a disjoint union of several copies of \mathbb{R}^n ? Consider, in particular, the case when X is a finite discrete space.