Квадратичные формы.

Задача 1. Пусть V — конечномерное векторное пространство над полем k, char $k \neq 2$, $Q: V \to k$ — квадратичная форма. Назовем метрическим морфизмом пар (V,Q) и (V',Q') такое линейное отображение $f: V \to V'$, что $Q' \circ f = Q$.

а) Пусть $v, w \in V$ — такие два вектора, что $Q(v) = Q(w) \neq 0$. Покажите, что существует метрический автоморфизм V, переводящий v в w.

Подсказка: если $Q(v-w) \neq 0$, то достаточно рассмотреть отражение относительно v-w, иначе рассмотрите отражение относительно v+w.

b) (Теорема Витта) Пусть V_1 и V_2 подпространства квадратичного пространства (U,Q), $\phi\colon V_1\to V_2$ — изометрия. Покажите, что ϕ продолжается до метрического автоморфизма (U,Q).

Подсказка: возъмите такие $v \in V_1$ и λ — метрический автоморфизм (U,Q), что $Q(v) \neq 0$ и λ переводит $\phi(v)$ в v. Тогда замена ϕ на $\lambda \phi$ и V_2 на $\lambda(V_2)$ позволяет считать, что $v \in V_1 \cap V_2$. Примените предположение индукции κ ортогональному дополнению κ v.

с) Переформулируйте и передокажите в инвариантных терминах остальные утверждения о квадратичных формах, доказанные в лекциях.

Подсказка: начните с утверждения о том, что изотропное пространство всегда содержит гиперболическое.

Задача 2°. При каких p следующие формы представляют ноль над \mathbb{Q}_p :

a)
$$5x_1^2 - x_2^2 - 3x_2^2$$
; b) $x_1^2 + x_2^2 + 7x_3^2 + 5x_4^2$?

Задача 3°. Определите все p, для которых следующие формы эквивалентны над \mathbb{Q}_p :

- a) $3x_1^2 + 7x_2^2$ и $x_1^2 + 84x_2^2$;
- b) $x_1^2 3x_2^2 + 15x_3^2$ и $3x_1^2 5x_2^2 + 3x_3^2$;
- c) $x_1^2 5x_2^2 + 3x_3^2 7x_4^2$ и $x_1^2 x_2^2 + x_3^2 x_4^2$.

Задача 4°. Убедитесь, что символ Гильберта $(a,b)_2$ является невырожденной билинейной формой $\mathbb{Q}_2^\times/(\mathbb{Q}_2^\times)^2 \times \mathbb{Q}_2^\times/(\mathbb{Q}_2^\times)^2 \to \mathbb{Z}/2\mathbb{Z} = \{\pm 1\}$. Запишите матрицу этой формы в базисе 2,-1,5.

Задача 5. а) Пусть $n(x,y,z)=x^2yz+y^2zx+z^2xy+x^2y^2+y^2z^2+z^2x^2-x^4-y^4-z^4.$ Убедитесь, что $n(x,y,z)\equiv -1\mod 4$ для всякой примитивной точки $(x,y,z)\in\mathbb{Z}_2^3.$

b) Положим $f(x_1,\ldots,x_9)=n(x_1,x_2,x_3)+n(x_4,x_5,x_6)+n(x_7,x_8,x_9)$ и $F(x_1,\ldots,x_{18})=f(x_1,\ldots,x_9)+4f(x_{10},\ldots,x_{18})$. Покажите, что F не имеет нетривиального нуля в \mathbb{Q}_2 .

Это даёт контрпример к гипотезе Артина о том, что всякий однородный многочлен степени d над \mathbb{Q}_p от d^2+1 и более переменных имеет нетривиальный ноль. Эта гипотеза верна для d=1,2,3 и для любого d и всех p, больших некоторой границы (зависящей от d).

Задача 6*. а) Определите символ Гильберта для поля степенных рядов $\mathbb{F}_q((t))$. Опишите его основные свойства.

- b) Когда квадратичная форма над $\mathbb{F}_q((t))$ представляет ноль? Когда две формы над этим полем эквивалентны? Дайте ответы, аналогичные случаю поля \mathbb{Q}_p .
- с) Что в этом случае можно сказать про теорему Минковского-Хассе?

Задача 7° . Какие из следующих форм представляют ноль над \mathbb{Q} :

a)
$$x_1^2 + x_2^2 - 15(x_3^2 + x_4^2)$$
; b) $3x_1^2 + 2x_2^2 - 7x_3^2$; c) $3x_1^2 + 2x_2^2 - 7x_3^2 + 2x_2x_3 + 2x_3x_1 + 2x_1x_2$?

3адача 8° . Какие простые числа рационально представимы следующими формами:

a)
$$x_1^2 + x_2^2$$
; b) $x_1^2 + 5x_2^2$; c) $x_1^2 - 5x_2^2$?

Задача 9°. Какие рациональные числа представимы следующими формами

a)
$$2x_1^2 - 5x_2^2$$
; b) $2x_1^2 - 6x_2^2 + 15x_3^2$?

Задача 10°. Найдите все рациональные решения уравнения $x^2 + y^2 - 2z^2 = 0$.

Задача 11°. Какие из следующих форм эквивалентны над \mathbb{Q} ? Если формы эквиваленты, определите соответствующую замену координат.

- a) $x_1^2 15x_2^2$ и $3x_1^2 5x_2^2$;
- b) $x_1^2 82x_2^2$ и $2x_1^2 41x_2^2$;
- с) $x_1^2 + x_2^2 + 16x_3^2$ и $2x_1^2 + 2x_2^2 + 5x_3^2 2x_2x_3 2x_1x_3$.

Подсказка: при поиске замены координат можно воспользоваться тем, что эквивалентные формы представляют одни и те же элементы.

Задача 12. При каких рациональных m формы $(m+1)(x_1^2+x_2^2+x_3^2)+mx_4^2$ и $x_1^2+x_2^2+x_3^2+m(m+1)x_4^2$ эквивалентны над \mathbb{Q} ?

Задача 13° (Теорема Лежандра). Докажите, что, если a,b,c — попарно взаимно простые целые числа, свободные от квадратов, и a,b,c не все одного знака, то квадратичная форма $ax^2 + by^2 + cz^2$ представляет ноль над $\mathbb Q$ тогда и только тогда, когда разрешимы сравнения $x^2 \equiv -bc \mod a, \ x^2 \equiv -ca \mod b$ и $x^2 \equiv -ab \mod c$.

Задача 14. Пусть f и g регулярные квадратичные формы над \mathbb{Q} , эквивалентные над \mathbb{R} и над всеми \mathbb{Q}_p , за исключением, возможно, одного $p = p_0$. Покажите, что f и g эквивалентны над \mathbb{Q} .

Подсказка: Вам поможет закон взаимности для символа Гильберта.

Задача 15 (немного о целых решениях). а) (лемма Дэвенпорта-Касселса) Пусть $f(x) = \sum_{i,j=1}^n a_{ij}x_ix_j$ — положительно определённая квадратичная форма, (a_{ij}) — симметрическая целочисленная матрица. Предположим, что для всякого $x \in \mathbb{Q}^n$ найдется такое $y \in \mathbb{Z}^n$, что f(x-y) < 1. Тогда, если $n \in \mathbb{Z}$ представимо f над \mathbb{Q} , то оно представимо f и над \mathbb{Z} . Подсказка: выберем такое наименьшее целое t > 0, что $t^2n = f(x)$, $x \in \mathbb{Z}^n$. Пусть x/t = y+z, где f(z) < 1. Покажите, что, если $z \neq 0$, то t' = at + b, x' = ax + by, a = f(y) - n, $b = 2(nt - \phi(x,y))$ удовлетворяют условию $t'^2n = f(x')$ и t' < t ($\phi(x,y)$ — билинейная форма, соответствующая f).

- b) Пусть далее $n \in \mathbb{N}$. Когда n- сумма двух целых квадратов?
- с) (Гаусс) Покажите, что n сумма трёх целых квадратов тогда и только тогда, когда $n \neq 4^a(8b-1), a, b \in \mathbb{N}$.
- d) (Лежандр) Всякое целое положительное число сумма четырёх квадратов.

Задача 16 (Слабая аппроксимационная теорема). Пусть $|\ |_n, \ n=1,\dots,N$ — неэквивалентные нормирования поля $k, \ k_n$ — пополнение поля k по норме $|\ |_n$. Покажите, что образ поля k всюду плотен в $\prod_{n=1}^{N} k_n$. Иными словами, для любого набора элементов $\alpha_n \in k_n$

и $\epsilon>0$ найдется такой элемент $\xi\in k$, что $|\xi-\alpha_n|_n<\epsilon$ для $n=1,\ldots,N.$

Подсказка: постройте индукцией по N такое $\theta_n \in k$, что $|\theta_n|_n > 1$ и $|\theta_n|_m < 1$ при $m \neq n$.

Задача 17. а) Пусть $f(x_1,\ldots,x_n)$ — регулярная квадратичная форма над $\mathbb{Q}_p, n \geq 3$ и пусть $h(x_1,\ldots,x_n) = h_1x_1 + \cdots + h_nx_n$, где не все h_j равны нулю. Пусть b — решение уравнения f(b) = 0. Тогда в любой окрестности b найдется такое c, что f(c) = 0 и $h(c) \neq 0$. Подсказка: можно считать, что $f(x_1,\ldots,x_n) = x_1x_2 + g(x_3,\ldots,x_n)$, а $b = (1,0,\ldots,0)$.

b) Пусть $S \subset V = \{\infty, 2, 3, 5, 7, 11, \dots\}$ — конечное подмножество. Предположим, что регулярная квадратичная форма f от $n \geq 3$ переменных представляет ноль над \mathbb{Q} и для всех $v \in S$ задано такое $b_v \in \mathbb{Q}_v^n$, что $f(b_v) = 0$. Докажите, что для любого $\epsilon > 0$ найдется такое $b \in \mathbb{Q}^n$, что f(b) = 0 и $|b - b_v|_v < \epsilon$ для всех $v \in S$.

Подсказка: из предыдущего пункта можно считать, что $f(c,b_v) \neq 0$ для всех $v \in S$. Воспользуйтесь слабой аппроксимационной теоремой, затем найдите требуемое решение в виде $\lambda c + d$, где d — приближение к b_v .

Задача 18 (Существование рациональных чисел с данными символами Гильберта). Пусть $V = \{\infty, 2, 3, 5, 7, 11, \dots\}$, $\{a_i\}_{i \in I}$ — конечное семейство элементов из \mathbb{Q}^{\times} , а $\{c_{i,v}\}_{i \in I,v \in V}$ — семейство чисел, равных ± 1 . Наша цель доказать, что для того, чтобы существовало такое $x \in \mathbb{Q}^{\times}$, что $(a_i,x)_v = c_{i,v}$ для всех $i \in I, v \in V$ необходимо и достаточно выполнение следующих условий: (1) почти все $c_{i,v}$ равны 1; (2) $\prod c_{i,v} = 1$ для всех $i \in I$;

- (3) для любого $v \in V$ существует такое $x_v \in \mathbb{Q}_v^{\times}$, что $(a_i, x_v)_v = c_{i,v}$ для всех $i \in I$.
- а) Убедитесь, что сформулированные условия являются необходимыми.
- b) Пусть $a_i \in \mathbb{Z}$, $S \subset V$ состоит из $\infty, 2$ и простых делителей чисел a_i , а $T = \{v \in V \mid c_{i,v} = -1$ для некоторого $i \in I\}$. Предположим, что $S \cap T = \emptyset$. Положим $a = \prod_{l \in T, l \neq \infty} l$ и
- $m=8\prod_{\substack{l\in S,l\neq 2,\infty\\x}}l$ и пусть p простое число, $p\equiv a\mod m,\,p\not\in S\cup T.$ Убедитесь, что число x=ap удовлетворяет условию задачи.
- с) Выведите из пункта b) и слабой аппроксимационной теоремы утверждение задачи в случае произвольных S и ${\cal T}.$
- **Задача 19.** Покажите, что квадратичная форма ранга n над \mathbb{Q} с дискриминантом d, инвариантами Хассе $c_v, v \in V$ и сигнатурой (s, r) существует тогда и только тогда, когда (1) $c_v = 1$ для почти всех $v \in V$ и $\prod_{v \in V} c_v = 1$; (2) $c_v = 1$, если n = 1 или n = 2, а образ d_v дискриминанта d в $\mathbb{Q}_v^*/(\mathbb{Q}_v^*)^2$ равен -1; (3) $r, s \geq 0$ и r + s = n (4) $d_{\infty} = (-1)^s$; (5) $c_{\infty} = (-1)^{s(s-1)}$.

Подсказка: разберите отдельно случаи n=1,2,3, пользуясь предыдущей задачей и слабой аппроксимационной теоремой. Общее утверждение докажите индукцией по n, рассматривая отдельно формы c сигнатурой (0,s) и $(r,s), r \geq 1$.

Задача 20 (Группа Витта). В этой задаче k- поле, $\operatorname{char} k \neq 2$.

- а) Пусть S абелева полугруппа с сокращением, т.е. на S задана такая коммутативная ассоциативная операция +, что $s_1+s=s_2+s$ влечёт $s_1=s_2$. Покажите, что существует единственная группа G и гомоморфизм полугрупп $\alpha\colon S\to G$ со следующим универсальным свойством: для любого морфизма полугрупп $\beta\colon S\to H$ существует единственный гомоморфизм групп $\gamma\colon G\to H$ такой, что $\gamma\circ\alpha=\beta$.
- b) Убедитесь, что классы эквивалентности невырожденных квадратичных форм над k образуют абелеву полугруппу с сокращением относительно операции прямой суммы \oplus . Группа G(k), получающаяся в результате применения конструкции из а), называется группой Гротендика поля k.
- с) Покажите, что фактор W(k) по подгруппе, порождённой классами эквивалентности гиперболических форм $Q(y_1,y_2)=y_1y_2$ может быть описан так: он состоит из классов эквивалентности невырожденных квадратичных форм над k, при этом две формы f и g представляют один элемент из W(k) тогда и только тогда, когда найдутся такие n и l, что $f \oplus (x_1x_2 + \cdots + x_{2n-1}x_{2n}) \sim g \oplus (y_1y_2 + \cdots + y_{2l-1}y_{2l})$. Группа W(k) называется группой Витта поля k.
- d) Докажите, что G(k) задаётся образующими $\langle a \rangle$, $a \in k^{\times}$, которые соответствуют формам ax^2 , и соотношениями $\langle a \rangle = \langle ab^2 \rangle$, $a,b \in k^{\times}$ и $\langle a \rangle + \langle b \rangle = \langle a+b \rangle + \langle ab(a+b) \rangle$, $a,b,a+b \in k^{\times}$. Подсказка: всякое соотношение имеет вид $\sum_{i=1}^{n} \langle a_i \rangle = \sum_{j=1}^{n} \langle b_j \rangle$. Разберите случаи n=1,2 и воспользуйтесь тем, что любые два ортогональных базиса можно соединить цепочкой ортогональных базисов, в которой на каждом шаге меняется не более двух векторов.
- е) Покажите, что W(k) задаётся образующими $\langle a \rangle, a \in k^{\times}$ и соотношениями $\langle a \rangle = \langle ab^2 \rangle, a, b \in k^{\times}, \langle a \rangle + \langle b \rangle = \langle a + b \rangle + \langle ab(a + b) \rangle, a, b, a + b \in k^{\times}$ и $\langle 1 \rangle + \langle -1 \rangle = 0$.
- f) Определим тензорное произведение $(V_1 \otimes V_2, Q_1 \otimes Q_2)$ двух квадратичных форм (V_1, Q_1) и

- (V_2,Q_2) , задав билинейную форму, соответствующую $Q_1\otimes Q_2$, правилом $\phi(v_1\otimes v_2,u_1\otimes u_2)=\phi_1(v_1,u_1)\phi_2(v_2,u_2)$. Убедитесь, что тензорное произведение определяет на W(k) структуру кольца.
- g) Вычислите $W(\mathbb{R})$ и $W(\mathbb{C})$.
- h) Покажите, что для нечётного q имеется изоморфизм $W(\mathbb{F}_q)\cong \mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}$, если $-1\in (\mathbb{F}_q^\times)^2$ и $W(\mathbb{F}_q)\cong \mathbb{Z}/4\mathbb{Z}$ иначе.
- i) Докажите, что при $p \neq 2$ имеет место изоморфизм $W(\mathbb{Q}_p) \cong W(\mathbb{F}_p) \times W(\mathbb{F}_p)$.
- j) Покажите, что $W(\mathbb{Q}_2) \cong \mathbb{Z}/8\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
- k) Докажите, что $W(\mathbb{Q}) \cong \bigoplus_p W(\mathbb{F}_p) \oplus \mathbb{Z}/2\mathbb{Z} \oplus W(\mathbb{R})$, где сумма берется по всем нечётным простым p.
- l^*) Вычислите $W(\mathbb{F}_p((t)))$ при $p \neq 2$.
- Задача 21 (Конечные проективные плоскости). Назовём конечной проективной плоскостью два конечных множества "множество точек" и "множество прямых" с отношением "точка лежит на прямой", удовлетворяющим четырём свойствам: (1) две различные точки лежат на одной и только одной прямой; (2) две различные прямые пересекаются в одной и только одной точке; (3) на каждой прямой есть не менее трёх точек; (4) найдутся четыре точки, каждые три из которых не лежат на одной прямой. Скажем, что проективная плоскость имеет порядок n, если найдется прямая, содержащая ровно n+1 точку. Далее мы рассматриваем проективные плоскости порядка n.
- а) Покажите, что найдется точка, через которую проходит ровно n+1 прямая.
- b) Докажите, что через всякую точку P проходит ровно n+1 прямая.
- Подсказка: если прямая l с n+1 точкой не проходит через P, то поможет рассуждение из предыдущего пункта, иначе постройте прямую, не проходящую через точку P и ещё одну точку вне l, и докажите, что на ней также будет n+1 точка.
- с) Выведите из предыдущего, что всякая прямая содержит ровно n+1 точку. Кроме того, всего имеется $N=n^2+n+1$ прямых и столько же точек.
- d) Пусть существует проективная плоскость порядка n. Занумеруем точки и прямые. Каждой прямой на проективной плоскости сопоставим линейную форму $l_k = \sum_j x_j$, где в сумме

берётся x_j , если и только если точка с номером j лежит на прямой с номером k. Покажите,

что
$$\sum_{k=1}^{N} l_k^2 = (n+1) \sum_{i=1}^{N} x_i^2 + 2 \sum_{1 \le i < j \le N} x_i x_j$$
.

- е) Выведите из предыдущего, что формы $\sum\limits_{i=1}^{N}x_{i}^{2}$ и $z_{1}^{2}+n\sum\limits_{i=2}^{N}z_{i}^{2}$ эквивалентны.
- f) (теорема Брака–Райзера) Пусть n порядок проективной плоскости и $n \equiv 1 \mod 4$ или $n \equiv 2 \mod 4$. Покажите, что всякое нечётное простое число p, входящее в n в нечётной степени, имеет вид p = 4n + 1.

Имеется гипотеза о том, что порядок конечной проективной плоскости — степень простого числа (при этом бывает много проективных плоскостей, не совпадающих с $\mathbb{P}^2(\mathbb{F}_n)$). Единственный известный случай несуществования, не покрывающийся теоремой Брака—Райзера, — это n=10. Доказательство — сложный компьютерный перебор.