- 3a da va 1. Рассмотрим вещественный многочлен $P_a(x) = x^3 + ax 1$. Докажите, что найдется гладкая функция φ параметра a, определенная при достаточно малых a, такая что $\varphi(0) = 0$ и $\varphi(a)$ корень P_a . Вычислите $\varphi'(0)$ и $\varphi''(0)$.
- $3a\partial a$ ча 2. Пусть гладкая функция $f\colon U\to \mathbb{R}$ определена в некоторой окрестности точки $0\in \mathbb{R}^n$ и ноль является морсовской критической точкой функции $f,\,g\colon U\to R$ гладкая функция.
- а) Докажите, что найдется такая окрестность $V\subset U$ точки ноль, при достаточно малом значении параметра ε функция $f+\varepsilon g$ имеет в V единственную критическую точку $x(\varepsilon)$. б) Докажите, что при достаточно малых значениях параметра $\varepsilon-x(\varepsilon)$ гладко зависит от ε .
- б) Вычислите $\frac{d}{d\varepsilon}|_{\varepsilon=0}(f(x(\varepsilon))+\epsilon g(x(\varepsilon))).$
- 3adaчa 3. Рассмотрим отображение $\mathbb{R}^n \to \mathbb{R}^n$, заданное частными производными функции f. Докажите, что морсовские критические точки функции f взаимнооднозначно соответствуют трансверсальным пересечениям графика этого отображения и графика нулевого отображения (переводящего все точки в ноль).
- $3a\partial a$ ча 4. Пусть f гладкая функция на \mathbb{R}^n . Докажите, что найдется такая линейная функция l, что f+l морсовская функция.
- $3a\partial a \cdot a$ 5. Пусть M^k гладкое подмногообразие в R^N . а) Докажите, что множество состоящее из пар (x,v), где $x\in M,\ v$ вектор длины один, перпендикулярный M является гладким многообразием, найдите его размерность.
- б) Рассмотрим проекцию построенного многообразия X в S^{N-1} , $(x,v)\mapsto v$. Докажите, что ограничение функции $\langle v,.\rangle$ $(v\in S^{N-1})$ на M является морсовской функцией если и только если v регулярное значение этой проекции.
- 3adaчa 6. Пусть A симметрический оператор на \mathbb{R}^n . Рассмотрим квадратичную форму $\langle Ax, x \rangle$. Пусть v критическая точка ограничения этой квадратичной формы на сферу. Докажите, что v собственный вектор оператора A.
- $\it 3adaчa$ 7. Выясните, при каких условиях на $\it A$ критические точки из прошлой задачи морсовские.
- 3adaчa 8. Рассмотрим (зависящую от параметра ε) кривую $x^2+y^2+\varepsilon(x^4+2y^4)=1$ на плоскости с евклидовыми координатами (x,y). Докажите, что эта кривая является подмногообразием при всех положительных ε . Вычислите производную площади фигуры, ограниченной этой кривой, по ε при $\varepsilon=0$.