Анализ на многообразиях. Листок 5. 29 октября 2014

- $3a\partial a$ ча 1. Вычислите производную Ли вдоль поля $\frac{\partial}{\partial x_1}$ от формы $\sum f_{i_1i_2..i_k}dx_{i_1}\wedge...\wedge dx_{i_k}$.
- $3a\partial a a = 2$. Докажите, что $L_v(\alpha \wedge \beta) = (L_v \alpha) \wedge \beta + \alpha \wedge L_v \beta$.
- $3a\partial a ua$ 3. Пусть g^t однопараметрическая группа диффеоморфизмов многообразия, $v = \frac{dg^t}{dt}|_{t=0}$ ее поле скоростей. Докажите, что если $L_v \alpha = 0$, то $(g^t)^* \alpha = \alpha$ для любого t.
- $3a\partial aua$ 4. Рассмотрим дифференциальную 1-форму α и векторные поля v,u. Проверьте (или опровергните) равенство $L_v(\alpha(u)) = (L_v\alpha)(u) + \alpha([v,u])$.
- $3a\partial a ua$ 5. Рассмотрим дифференциальную 1-форму α и векторные поля v,u. Проверьте (или опровергните) равенство $d\alpha(u,v) = L_v(\alpha(u)) L_u(\alpha(v)) \alpha([u,v])$.
- $3a\partial aua$ 6. Рассмотрим в трехмерном евклидовом пространстве с координатами (x, y, z) график функции f(x, y). Выпишите форму площади в координатах (x, y).
- $3a\partial a va$ 7. Рассмотрим двумерную сферу $\{x^2+y^2+z^2=a^2\}$ и описанный вокруг нее прямой круговой цилиндр $\{x^2+y^2=a^2,|z|\leq a\}$. Для точки x сферы, отличной от полюсов $(0,0,\pm a)$, рассмотрим луч с началом на оси аппликат (так называется ось Oz), ортогональный ей, и проходящий через точку x. Отобразим x в точку пересечения этого луча с цилиндром. Докажите, что построенное отображение из сферы без двух точек в цилиндр сохраняет площадь.
- $3a\partial a$ ча 8. Докажите, что $S^n, T^n, \mathbb{C}P^n$ ориентируемы при любом n, а $\mathbb{R}P^n$ только при нечетном n.
- 3adaчa 9. Рассмотрим ориентируемое многообразие M и гладкое отображение $M \to N$. Докажите, что прообраз регулярного значения является ориентируемым многообразием?
- Задача 10. Что можно сказать об ориентируемости декартова произведения двух многообразий?