Топология-2, семинар 8, 19.11.2015.

Задача 1. Покажите, что пространства S^2 и $S^3 \times \mathbb{C}P^\infty$ имеют одинаковые гомотопические группы, но разные группы гомологий.

Задача 2. Покажите, что пространства $S^m \times \mathbb{R} P^n$ и $\mathbb{S}^n \times \mathbb{R} P^m$ имеют одинаковые гомотопические группы, но при $m \neq 1, \, n \neq 1, \, m \neq n$ их группы гомологий различны.

Задача 3. Покажите, что пространства $S^1 \vee S^1 \vee S^2$ и $S^1 \times S^1$ имеют одинаковые группы гомологий, но разные гомотопические группы.

Задача 4. Докажите, что $\pi_4(S^3)\cong \mathbb{Z}_2$ или 0. (Указание: рассмотрите гомоморфизм надстройки $\pi_3(S^2)\to\pi_4(S^3)$ и используйте задачи 11 и 12 из листка 7). Трудная часть теоремы Фрейденталя даёт $\pi_1^s=\pi_4(S^3)\cong \mathbb{Z}_2$.

Задача 5. Докажите следующую относительную теорему Гуревича: если пара (X,A) является (n-1)-связной, $n\geq 2$, а пространство A односвязно и непусто, то $H_i(X,A)=0$ при i< n и $h\colon \pi_n(X,A,x_0)\to H_n(X,A)$ — изоморфизм.

Задача 6. Приведите пример (n-1)-связной пары $(X,A), n \geq 2$, с неодносвязным A, для которой $h \colon \pi_n(X,A,x_0) \to H_n(X,A)$ не является изоморфизмом.

Задача 7. Покажите, что проекция

$$S^1\times S^1\to (S^1\times S^1)/(S^1\vee S^1)=S^2$$

индуцирует тривиальный гомоморфизм в гомотопических группах, но нетривиальный гомоморфизм в группах гомологий.

Задача 8. Покажите, что проекция $p \colon S^3 \to S^2$ расслоения Хопфа индуцирует тривиальный гомоморфизм в группах гомологий, но нетривиальный гомоморфизм в гомотопических группах.