Семинар 2. Ещё о кольцах, полях и абелевых группах

Задача 2.1. Пусть a, m, n — натуральные числа. Найдите НОД

- (a) чисел $a^m 1$ и $a^n 1$, (б) многочленов $x^m 1$ и $x^n 1$, (в) многочленов $x^{a^m} x$ и $x^{a^n} x$.
- **Задача 2.2.** Вычислите остатки от деления многочлена $(x+1)^{2019}$ на многочлены **(a)** (x-3), **(b)** (x-4), **(b)** (x-3)(x-4).
- Задача 2.3. Коммутативное кольцо называется факториальным, если любой его элемент однозначно раскладывается на простые (неприводимые) множители. Примерами факториальных колец служат целые числа $\mathbb Z$ и кольцо многочленов $\mathbb k[x]$ с коэффициентами в поле. Сформулируйте аккуратно, что значит однозначно и докажите, что евклидово кольцо факториально.
- **Задача 2.4.** Верно ли, что для любого поля **№** имеется бесконечное количество неприводимых многочленов? бесконечное количество неприводимых многочленов сколь угодно большой степени? Что можно сказать про количество простых элементов в произвольном евклидовом кольце.
- **Задача 2.5.** Докажите, что следующие кольца евклидовы и вычислите подходящие функции Эйлера $\varphi_R(a)$, считающие количество обратимых элементов в факторкольце кольца R по главному идеалу, порожденному элементом $a \in R$:
 - (a) R кольцо многочленов $\mathbb{F}_p[x]$, норма $N(f(x)) := \deg f(x)$;
 - (б) R кольцо гауссовых чисел $\mathbb{Z}[i]$, норма $N(a+bi) := a^2 + b^2$;
- (в)* R числа Эйзенштейна $\mathbb{Z}[\omega]$, где ω комплексный корень уравнения x^2+x+1 , в качестве нормы возьмите $N(a+bw):=a^2-ab+b^2$.
- **Задача 2.6.** Докажите комбинаторно следующие численные равенства, посчитав разным способом элементы в подходящем (фактор)кольце: (a) $\sum_{d|n} \varphi(d) = n$, (б) $\sum_{f(x)|g(x)} \varphi_{\mathbb{F}_p[x]}(f(x)) = p^{\deg(g(x))}$.

Залача 2.7

- (a) Рассмотрим башню полей $\mathbb{k} \subset \mathbb{F}$ и элемент $\alpha \in \mathbb{F}$, удовлетворяющий алгебраическому уравнению $f(\alpha) = 0$. Докажите, что множество значений многочленов $\mathbb{k}[\alpha]$ образуют промежуточное подполе $\mathbb{k} \subset \mathbb{k}[\alpha] \subset \mathbb{F}$; Сколько элементов в $\mathbb{k}[\alpha]$, если \mathbb{k} конечное поле из q элементов;
 - (6) Докажите, что количество элементов в конечном поле \mathbb{F} характеристики p может быть только p^n .
- (в) При каких условиях на числа q, q' конечное поле из q элементов вкладывается в конечное поле из q' элементов.

Задача 2.8. Обозначим за $N_p(d)$ количество приведенных неприводимых многочленов степени d над полем \mathbb{F}_p . (a) Вычислите $N_p(d)$ экспериментально для малых d и p=2,3. Выпишите неприводимые многочены степени

- (6) Докажите, что любой неприводимый многочлен f(x) степени d|n делит многочлен $x^{p^n} x$,
- (в) Докажите, что многочлен $x^{p^n} x$ не имеет кратных корней и любой его неприводимый делитель имеет степень d|n,
 - (г) Докажите равенство $p^n = \sum_{d|n} dN_p(d)$.

Задача 2.9. Функция $\psi: \mathbb{N} \to \mathbb{C}$ называется мультипликативной, если для любых взаимнопростых чисел m, n выполнено $\psi(mn) = \psi(m)\psi(n)$.

 $(\Phi y$ нкция Mёбиуса) Мультипликативная функция Mёбиуса $\mu(n)$ определена на степени простого числа p следующим простым образом $\mu(p^n) = -\delta_{n,1}$. Докажите, что

- (a) $\sum_{d|n} \mu(d) = \delta_{n,1}$,
- **(б)** следующие соотношения на (мультипликативные) функции $a,b:\mathbb{N}\to\mathbb{C}$ равносильны:

$$b(n) = \sum_{d|n} a(d) \Leftrightarrow a(n) = \sum_{d|n} \mu(d)b(\frac{n}{d})$$

- **(в)** $\mu(n)$ равна сумме примитивных корней степени n из единицы.
- (г) Пользуясь функцией Мёбиуса, найдите формулу для числа $N_p(n)$ неприводимых многочленов степени n над конечным полем \mathbb{F}_p .