Семинар 5. Линейные отображения и факторпространства

Задача 5.1. Докажите, что ранг ненулевой $m \times n$ -матрицы A равен 1, если и только если

- (а) все строки матрицы пропорциональны; (б) все столбцы матрицы пропорциональны;
- (в) существуют 2 набора чисел x_1,\ldots,x_m и y_1,\ldots,y_n такие, что $A_{ij}=x_iy_j.$
- (г) матрица A представляется в виде произведения $m \times 1$ и $1 \times n$ матриц.

Задача 5.2. Пусть A вырожденная 2×2 матрица. Докажите, что существует базис, в котором эта матрица имеет вид $\begin{pmatrix} \lambda & 0 \\ 0 & 0 \end{pmatrix}$ или $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

Задача 5.3. Напишите матрицу линейного отображения D из векторного пространства многочленов степени не выше n в себя в базисе $1, x, \ldots, x^n$

- (a) D оператор дифференцирование $\frac{\partial}{\partial x}$; (б) D оператор сдвига $D_a:f(x)\mapsto f(x+a)$.
- (в) Проверьте, что произведение матриц операторов сдвига D_a и D_b на числа a и b есть матрица сдвига на сумму D_{a+b} .
- (a) Покажите, что найдется такое число N, что любое линейное отображение φ из Задача 5.4. векторного пространства $n \times n$ матриц в себя представляется в виде суммы $\varphi(X) = \sum_{i=1}^{N} A_i X B_i$ для некоторого подходящего набора матриц $A_1, \ldots, A_N, B_1, \ldots, B_N$.
 - (6) Покажите, что N нельзя положить меньшим n, но можно положить равным n^2 .

Задача 5.5. *Коразмерностью* подпространства $W \subset V$ называется размерность факторпространства V/W. Вспомните почему любой идеал в кольцах многочленов $\mathbb{F}[x]$ и степенных рядов $\mathbb{F}[[x]]$ главный (порождается одним элементом) и покажите, что он имеет конечную коразмерность.

Задача 5.6. Пусть \mathbb{F}^X – пространство \mathbb{F} -значных функций на конечном множестве X. Рассмотрим подпространства $V_Y, W_Y \subset \mathbb{F}^X$ тех функций, которые постоянны (соотв. равны 0) на подмножестве $Y \subset X$.

- (a) Постройте изоморфизмы: $\varphi_{Y,X}: \mathbb{F}^X/W_Y \to \mathbb{F}^Y, \ \psi_{Y,X}: \mathbb{F}^X/V_Y \to \mathbb{F}^Y/\mathbb{F}^{\{0\}}.$
- (б) Покажите, что эти изоморфизмы можно выбрать согласованно, то есть таким образом, чтобы для отображения множеств $f: X \to X'$ (такого, что $f(Y) \subset Y'$) имело место равенство композиций линейных отображений, записанных в виде коммутативных диаграмм:

Задача 5.7. Рассмотрим последовательность векторных пространств и отображений между ними:

$$0 \xrightarrow{d_{-1}} V_0 \xrightarrow{d_0} V_1 \xrightarrow{d_2} \dots \xrightarrow{d_{n-1}} V_n \xrightarrow{d_n} 0 \tag{5.1}$$

Обозначим $Z_i := \ker(d_i)$ и $B_i := \operatorname{im}(d_{i-1})$ подпространства в V_i . Докажите равенства

(a)
$$\left(\sum_{i=0}^n \dim Z_i\right) - \left(\sum_{i=0}^n \dim(V_i/B_i)\right) = \dim V_0 - \dim V_n;$$

(a) $\left(\sum_{i=0}^{n} \dim Z_{i}\right) - \left(\sum_{i=0}^{n} \dim(V_{i}/B_{i})\right) = \dim V_{0} - \dim V_{n};$ (б) $\sum_{i=0}^{n} (-1)^{i} \dim V_{i} = \sum_{i=0}^{n} (-1)^{i} \dim H_{i}$, при условии $d_{i+1} \circ d_{i} = 0 \ \forall i$. В данной ситуации последовательность (5.1) называется цепным комплексом, пространства $H_i := Z_i/B_i$ его гомологиями, а описанная знакопеременная сумма эйлеровой характеристикой.

Задача 5.8. Зафиксируем цепочку вложенных векторных пространств $U_1 \subset U_2 \subset U$ над \mathbb{F}_q размерностей 2,4,7 соответственно. Сколько существует подпространств $V\subset U,$ таких что

(a)
$$V + U_2 = U$$
 и dim $V = 6$, (6) $V \cap U_2 = U_1$ и dim $V = 5$, (B) $(V + U_2 = U)$ & $(V \cap U_2 = U_1)$.

Задача 5.9. Назовем два набора подпространств $(V_1,\ldots,V_k),\,(V_1',\ldots,V_k')$ в заданном n-мерном пространстве V эквивалентными, если существует линейный изоморфизм $A: V \to V$, такой что $A(V_i) = V_i'$.

(a) Докажите, что числа $d_{i_1...i_s}:=\dim V_{i_1}\cap\ldots\cap V_{i_s}$ являются инвариантами (то есть одинаковы у эквивалентных наборов), можете ли вы предъявить ещё натуральнозначные инварианты? Например, является ли инвариантом $\dim(V_1 + V_2)/(V_1 \cap V_2)$? Выражается ли он через уже описанные?

Верно ли, что существует конечное число инвариантнов однозначно определяющий набор из

 $(\Gamma)^*$ трёх подпространств с точностью до эквивалентности. **(б)** одного, **(в)** двух,

В тех случаях, когда это возможно предъявите минимальный набор инвариантов.