Семинар 8. Соответствие Галуа

- Задача 8.1. Вычислите степень минимального многочлена над Q у следующих чисел
- (a) $\sqrt{p_1}+\ldots+\sqrt{p_k}$, где p_1,\ldots,p_k попарно взаимнопростые числа большие 1 и свободные от квадратов;
 - (6) $\sqrt[3]{3} + \sqrt[5]{5}$;
 - (в) $\xi + \bar{\xi}$, где ξ примитивный корень 11-ой степени из единицы.
- Задача 8.2. Известно, что для многочлена $f(x) \in \mathbb{k}[x]$ степени n степень расширения поля разложения \mathbb{k}_f/\mathbb{k} равна n!. Докажите, что f(x) – неприводимый, \mathbb{k}_f/\mathbb{k} – расширение Галуа и вычислите его группу Галуа.
 - Задача 8.3. Предъявите расширения Галуа поля Q, группа Галуа которых равна
 - (a) $\mathbb{Z}/(2\mathbb{Z}) \times \mathbb{Z}/(2\mathbb{Z})$,
- (6) $\mathbb{Z}/(3\mathbb{Z})$,
- (B) S_3 , (r) A_4 ,

Задача 8.4. Пусть \mathbb{L} – конечное расширение Галуа поля \mathbb{R} , содержащее \mathbb{C} . Докажите,

- (а) что у поля \mathbb{R} не бывает расширений нечётной степени;
- Указание: Воспользуйтесь теоремой о промежуточном значении из анализа и покажите, что над \mathbb{R} не бывает неприводимых многочленов нечётной степени;
 - (б) что расширение \mathbb{L}/\mathbb{C} расширение Галуа степени 2^n ;
- **(в)** основную теорему Алгебры, то есть, что поле \mathbb{C} алгебраически замкнуто. Указание: покажите явно, что поле $\mathbb C$ не имеет квадратичных расширений.
- **Задача 8.5.** Пусть \mathbb{F}/\mathbb{k} расширение Галуа с группой Галуа G и $H \subset G$ некоторая её подгруппа.
- (a) Покажите, что сопоставление $x\mapsto {\rm Tr}(L_x)$ (след оператора L_x умножения слева на элемент x) задаёт \mathbb{F}^H -линейное сюрьективное отображение $\mathrm{Tr}: \mathbb{F} \to \mathbb{F}^H$;
 - (б) Если $\alpha_1, \ldots, \alpha_n$ базис \mathbb{F}/\mathbb{k} , то $\operatorname{Tr}(\alpha_1), \ldots, \operatorname{Tr}(\alpha_n)$ порождают \mathbb{F}^H .