НМУ, 2 курс, анализ на многообразиях. Листок 2. Тензорные поля, дифференциальные формы. 17.09.2020.

Задача 1. Тензор $(e_1 + e_2) \otimes (2e^1 - e^3)$ задает оператор A на векторном пространстве с выбранным в нём базисом e_1, e_2, e_3 . Какой тензор задает оператор A^2 ?

Задача 2. Найти $\omega \wedge \sigma$, если

$$\omega = x \, dy + y \, dz + z \, dx \in \Omega^1(\mathbb{R}^3), \quad \sigma = dx \wedge dy + dy \wedge dz + dz \wedge dx \in \Omega^2(\mathbb{R}^3).$$

Задача 3. Доказать, что если дифференциальные 1-формы $\omega_1, \ldots, \omega_p$ линейно зависимы, то $\omega_1 \wedge \cdots \wedge \omega_p = 0$. Верно ли обратное?

Задача 4. Верны ли результаты предыдущей задачи, если рассматривать k-формы?

Задача 5. Пусть Ω дифференциальная p-форма, а ω — дифференциальная 1-форма, не равная нулю. Доказать, что Ω представима в виде $\Omega = \theta \wedge \omega$ тогда и только тогда, когда $\Omega \wedge \omega = 0$.

Задача 6. Найти $d\omega$, если $\omega = x^2 dx \wedge dy + xz dy \wedge dz \in \Omega^2(\mathbb{R}^3)$.

Задача 7. Найти $d\omega$, если

$$\omega = \frac{x \, dy - y \, dx}{x^2 + y^2} \in \Omega^2(\mathbb{R}^2 \setminus \{O\}).$$

Задача 8. Найти $f^*\omega$, если

$$\omega = \frac{x \, dy - y \, dx}{x^2 + y^2} \in \Omega^2(\mathbb{R}^2 \setminus \{O\})$$

а $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ задано формулой $(x,y) = f(u,v) = (u^2 - v^2, 2uv).$

Задача 9. Докажите, что $d(f^*\omega) = f^*(d\omega)$.

Задача 10*. Докажите ассоциативность внешнего умножения форм.