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On Krull-Schmidt theory!

In this note k denotes a field and all rings and algebras are unital and associative.
Recall that a ring A is called local if it has an ideal R C A such that all elements in A\ R
are invertible. If this is the case, the quotient ring A/R is a division ring.

Definition 1. An additive category is called Krull-Schmidt if
e any object has a decomposition into a finite direct sum of indecomposable objects,
e the endomorphism ring of any indecomposable object is local.

Theorem 2. Let A be an additive k-linear idempotent complete category. Suppose that any
space Hom(X,Y") is finite-dimensional. Then A is a Krull-Schmidt category.

To prove Theorem, we need several lemmas.

Lemma 3. Let V be a finite-dimensional k-vector space and A C End(V') a subalgebra. Suppose
A has no nontrivial idempotents, then any element in A is either invertible (in End(V')) or
nilpotent.

Proof. Take any a € A. Let x,(t) € k[t] be the characteristic polynomial of a. We have

Xalt) =7 f(1)
where f € k[t], f(0) # 0. One can find polynomials p(t), q(t) € k[t] such that

() + F(Dq(t) = 1.

Let a; = a%(a),as = f(a)qg(a) € A. Then a; +ay = 1 and ajay = a®f(a)p(a)q(a) =
Xa(@)p(a)q(a) = 0, similarly asa; = 0. It follows that a;,ay are idempotents. They should
be trivial. Suppose a; = a’p(a) = 1, it follows that a is invertible (if d # 0 this is obvious, if
d = 0 then deta = £x,(0) # 0 and a is invertible). Suppose as = f(a)q(a) = 1, then f(a) is
invertible. It follows that a? = y,(a)f(a)~! = 0, and a is nilpotent. O

Lemma 4. Let A be a finite-dimensional k-algebra. Suppose A has no nontrivial idempotents,
then any element in A is either invertible or nilpotent.

Proof. Consider the left adjoint representation of A: a — [, = a - —, it is an injective homo-
morphism

[: A— Endk(A)

By Lemma 3 applied to the image of [, for any element a € A either [, is nilpotent or invertible.
In the first case a is nilpotent. In the second case there exists b € A such that ab = [,(b) = 1.
It follows that l,l, = 1 € Endg(A), hence ll, = 1 and ba = 1. Thus a is invertible. O

Lemma 5. Let A be a ring. Suppose that any element in A is either invertible or nilpotent.
Then the set of nilpotents in A is a maximal ideal and A is local.

Proof. Left to the reader. O

By technical reasons these notes are typed in English. Also, the exposition here is slightly different from
one from the lecture
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Proof of Theorem 2. The existence of a decomposition is almost clear. We prove it by induction
in dim(End(M)). Clearly, it M = M; & M, then dim(End(M)) > 2. Hence any M with
dim(End(M)) = 1 is indecomposable. For the induction step, assume M = M; @& M, and use
that
dim(End(M;)), dim(End(M;)) < dim(End(M)).
Now let M € A be an indecomposable object. The algebra A = End(M) is finite-dimensional
by assumptions. Also, A has no nontrivial idempotents because M is indecomposable and A is
idempotent complete. Now by Lemmas 4 and 5, the algebra A is local. [

Example 6. Let A be a finite-dimensional k-algebra. Then the categories mod—A and D°(mod—A)
are Krull-Schmidt.

Let X be a projective scheme over k. Then the categories cohX and D°(cohX) are Krull-
Schmidt.

Theorem 7. Let A be a Krull-Schmidt category. Then decomposition of an object in A into a
direct sum of indecomposable objects is unique in the following sense: if M = My & ... ® M,
and M = M| & ... ® M/ then n =m and up to renumbering of objects one has M; = M.

For the proof we will need a notion of ideal in an additive category.

Definition 8. Let A be an additive category and Z be a family of morphisms in 4. Denote
Z(X,Y) :=ZNHom(X,Y) for any X, Y € A. We say that Z is an ideal in A if for any f,g € Z
and h a morphism in A we have —f, f + g, fh, hf € T as soon as the operations make sense.
One-sided ideals are defined similarly.

Lemma 9. Let Z be an ideal in an additive category A. Let P;,Q; € Ind(A), P = ®F;,, Q =
©Q;. Let f € Hom(P, Q), write it as f =3, fij, where fij: Pi— Q. Then f € T < f;; €T
foralli,j.

Proof. 1t follows clearly from properties of an ideal. n

Definition 10. For an ideal Z in an additive category A the quotient category A/Z is defined
as follows. Its objects are the same as in 4 and the Hom spaces are

Hom 4,z(X,Y) := Homu(X,Y)/Z(X,Y).

One can see that this is well-defined, A/Z is an additive category and there is a natural
additive functor

m A— A/T.

Definition 11. Let A be an additive category. Its radical is defined as the ideal generated by
all non-invertible morphisms between indecomposable objects. Notation: R(.A).

Proposition 12. Let A be a Krull-Schmidt category and R = R(A). Let X, Y € Ind(A). Then
R(X,Y) consists of all non-invertible morphisms from X toY .

Proof. Assume f € R(X,Y). If X 22 Y there is nothing to prove, if X =Y we can assume that
X =Y. By definition, f = f; where f; factors as

i b; i
X5 X, 575X,

where X;,Y; € Ind(A) and b; is not invertible. Assume that f; is invertible, then b;a; is a split
embedding. Since Y; is indecomposable, its endomorphism ring has no idempotents, it means
that b;a; is invertible. Then b; is a split surjection. Since X; is indecomposable, it means that b; is
invertible, a contradiction. Hence f; is not invertible, f; € R(End(X)) and thus f € R(End(X))
is not invertible. O
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Let us describe the quotient category of a Krull-Schmidt category by its radical. For an
indecomposable object X € A denote by T'x the quotient

Tx = End(X)/R(End(X)),
it is a division ring. By Proposition 12 we have
Enda/r(a)(X) =Ty, Homur)(X,Y) =0,

for X 2 Y indecomposable.
It follows that

Proposition 13. For a Krull-Schmidt category A one has

A/R(A) = P mod-Tx,

Xelnd(A)
where the sum is taken over isomorphism classes of indecomposable objects.

Proof of Theorem 7. Follows from Proposition 13 since mod—Tx is the category of finite-
dimensional vector spaces over the division ring and the dimension of such vector spaces is

well-defined. 0

Remark 14. Let A be the category of finite-dimensional k-vector spaces V' with dim V' # 1.
Then A is not idempotent complete and a decomposition into indecomposable summands can
be not unique. For example, kb = k2 @ k? @ k? = k? @ k® are two such decompositions. The
endomorphism algebras End(k?) = M, (k) and End(k®) = M;(k) of indecomposable objects are
not local.

We continue with some properties of Krull-Schmidt categories. For a local ring A we de-
note its maximal ideal by R(A) and call it the radical of A. Denote by Ind(A) the family of
indecomposable objects in A.

Lemma 15. Let A be a Krull-Schmidt category, P,Q1,...,Q, € Ind(A), P % Q;. Let P ER
®Q; L P be morphisms, then gf € R(End(P)).

Proof. We have f =" f; where f;: P — @Q; belongs to R(A). By Lemma 9 f € R(A), hence
gf € R(A). By Proposition 12 we get that gf € R(End(P)). ]

Lemma 16. Let A be a Krull-Schmidt category, P € Ind(A), Q € A. Then a morphism
f: P — Q is a split monomorphism iff f & R(A). A similar dual statement holds.

Proof. If f is a split mono then gf = 1p for some g. Suppose f € R(A), then 1p € R(A), a
contradiction with Proposition 12. Now assume f ¢ R(.A). Write QQ = ©Q); with indecomposable
Q;, then f =>" f;, where f;: P — Q;. By Lemma 9, f; ¢ R(A) for some i. By Proposition 12,
fi is an isomorphism. It follows easily that f has a left inverse. O]

Lemma 17. Let A be a Krull-Schmidt category, P € Ind(A), Q1,...,Q, € A, fi: P — @Q;
be some morphisms. Then [ = &f;: P — &Q; is a split monomorphism iff f; is a split
monomorphism for some i. A similar dual statement holds.

Proof. By Lemmas 16 and 9, f is a split mono <= f ¢ R(A) < f; ¢ R(A) for some i <=
fi is a split mono for some . O]



