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On quivers and their representations!

By definition, a quiver I' is an oriented graph. It consists of a set I'y of vertices and a set
[’y of edges (also called arrows). For any arrow a € I'y we denote by s(a) its source and by t(a)
its target. Today we will consider only finite quivers, that is, the sets I'y and I'; are finite.

A representation of a quiver I' over a field k is by definition a collection (M;,i € T'g;mg,a €
I'1), where M; are vector spaces and mg: Mgy — My, are linear maps. A representation is
finite-dimensional if all M; are finite-dimensional. A morphism of representations (M;, m,) —
(Ni,ng) is a collection (f;, i € T'y), where f;: M; — N; are linear maps obeying equalities

ft(a)ma - nafs(a)

for any a € I'1. Representations of I' over k form an abelian category which we denote by Rep,I.

Also one can consider contravariant representations of I', where linear maps go in the oppo-
site direction. If we denote the quiver I' with all the arrows reversed by I'?, then the category
of contravariant representations of I' is just Rep,I'?’.

A path from ig € I'y to i,, € I'g is by definition a sequence of arrows aq,...,a, such that
s(ay) = 1ig, tlan) = i, and t(ax) = s(agyy) for all k = 1,...,n — 1. Such path is written as
P = Apap_1 - ... ay, it is said to have source s(p) = iy, target t(p) = i,, and length n. Clearly,

any arrow is a path of length 1. Also, by definition for any 7 € Iy we have a path of length 0
from ¢ to 7, denoted by e;.

The path algebra kI of I is defined as follows. As a k-vector space, it has the basis formed by
all paths in I'. The composition law is defined on basic elements p = a,,...a; and ¢ = b,, ... by
by pg = ay, ...a1by, ... by if t(q) = s(p) and pg = 0 otherwise. The algebra kI" is associative, it
has the identity 1 = >, . e;. The path algebra is finite-dimensional if and only if I' has no
oriented cycles. The algebra kI is usually non-commutative. Also, kI" has a grading by the path
length: kI' = @,,59(kl),,.

Let R = R(kI') = ®,>0(kI'),, C kI' be the subspace spanned by paths of positive length.
Clearly, R is a two-sided ideal. One has an algebra isomorphism kI'/R(kI") = [ ... k, hence kI’
is a basic algebra.

Elements e;,7 € I'y form a complete family of orthogonal idempotents: it means that

i€lg

(1) 6?:%61'6]':0 for i # j and Zeizl.

Instead of representations one can consider modules over path algebras. For a right kI'-
module M and 7 € I'y denote
M;:=M-e; C M.

Formulas (1) imply the equality of vector spaces M = @;cr, M;. For any arrow i — j the right
multiplication M — M sends M; to M; and other Mj-s to 0. Thus we get a contravariant
representation of I'. Vice versa, for any contravariant representation (M;, m,) of I' consider the
vector space M = @;M;. It is a right kI'-module: let idempotents e; acts by projectors to M;,
let an arrow a: @ — j act by m, on M; and by 0 on other Mj-s. This action extends to a right
k" action on M. This gives a proof of

Proposition 1. One has equivalences

Rep ' =2 kI'—=Mod; Rep, '’ = Mod—kI".

By technical reasons these notes are typed in English.



06.10.2020
Lecture 5
We prefer to use right modules/contravariant representations. By default, mo-
dules are right modules.
Let us consider the following kI'-modules.
For any ¢ € I'y let S; be the representation of I' such that (S;); =k, (S;); = 0 otherwise, all
arrows act by zero. Let P; = e;kI" C kI' be the cyclic submodule generated by e;.

Proposition 2. 1. Modules S; are simple and pairwise non-isomorphic.

2. One has kI' = @jer, P;. Modules P; are graded, projective, indecomposable and pairwise
non-isomorphic.

3. For any right kI'-module M one has Hom(P;, M) = M,. In particular, Hom(P;, S;) = 6;;k.
4. Hom(P;, P;) = (P;); = (paths from i to j)x.

Proof. (1) is clear.

(2) Identities (1) imply that kI" = @;er, P, hence P;-s are projective. Any P; is graded as a
submodule in kI" generated by a homogeneous element e;. One has P;/P;R(kI") & S; hence P;-s
are pairwise non-isomorphic.

(3) To any homomorphism f: P, — M one can associate an element f(e;) € M;. This
element defines f uniquely. Moreover, any m € M; can be such an image for some f. Indeed,
consider the homomorphism f: kI' = M given by f(x) = ma and restrict it to P; C kI', denote
the restriction by f. Then f(e;) = me; = m.

(4) follows from (3) because (P;); = e;kl'e; = (paths from i to j)x. O

By a relation in I' we mean an element in kI' of the form ), A\;p; where \; € k and
P1, - - ., Pp are paths with common source and target. Alternatively, we can consider a two-sided
ideal I C kI'. Since I = @®; jer,eile;, any ideal is generated (over k) by relations.

For an ideal I C kI a path algebra with relations is defined as kI'/I. Today we will denote
this algebra by A. We usually use the same notations for elements in kI" and their images in A.
In particular, we have a complete system of orthogonal idempotents e;,7 € I'y in A.

For any i,j € 'y we denote (kI');; := e;kl'e; C kI, I;; := e;le; C I and A;; = e;Ae; C A,
these are linear subspaces. We have kI' = @;;(kI");;, I = @;;1;; and A = &, ;jA;;. Consequently,

Aij = (kT)i;/ L,

it is the space of paths from j to ¢+ modulo some relations.
As we shall see, one can restrict to admissible ideals in path algebras.

Definition 3. An ideal I C kI is called admissible if R(k')?> D I > R(kI")" for some N.

For an admissible ideal the path algebra A with relations is finite-dimensional. Note also
that zero ideal in kI' is admissible iff I" has no oriented cycles.

Further we will assume that ideal I is admissible.

Let R(A) := R(kI')/I C A, this is a nilpotent ideal. Moreover, A/R(A) = kI'/R(kI") =
[Licr, b, hence R(A) is the radical of A. Also it follows that A is a basic algebra.

In view of Proposition 1, modules over A correspond to those representations of I' that obey
relations from 7. This gives an equivalence of certain categories.

Let M be a module over A. For any i € I'y we denote by M; the subspace Me; C M. As
above, one has a decomposition of k-vector spaces

M = @jer, M;.

Simple kI'-modules S; satisfy all relations from I hence S; is an A-module. Also, let P; :=
e; A C A, this is a right A-module.
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Proposition 4. Assume I C kL' is an admissible ideal and A =kI'/I. Then

1. Modules S; are simple and pairwise non-isomorphic. Any simple A-module is one of these.

2. One has A = @er,Pi. Modules P; are projective, indecomposable and pairwise non-
isomorphic. Any indecomposable projective A-module is one of these.

3. For any right A-module M one has Hom(P;, M) = M,. In particular, Hom(P;, S;) = 0;;k.
4. Hom(P;, P;) = (P;); = (paths from i to j)x/1;.

Proof. (1) Only the last assertion in not straightforward. It follows from a more general fact:
any finite-dimensional A-module has a filtration with quotients S;. Indeed, let M be a such
module. Consider the sequence M D M - R(A) D M - R(A)?> D> ... D> M - R(A)Y = 0. Any its
quotient is a module annihilated by R(A), thus is a direct sum of S;-s. Refining this filtration
we get a filtrations with quotients S;-s.

The proof of (2) is the same as in Proposition 2. To see that P; is indecomposable, use that
P/P; - R(A) = S; is indecomposable and Lemma 5 below. To see that any indecomposable
projective A-module is isomorphic to some P;, use Krull-Schmidt theorem.

(3),(4) are similar to those of Proposition 2. O

Lemma 5 (“Nakayama’s Lemma”). Assume I C kI' is an admissible ideal and A = kI'/I. Let
M be an A-module such that M = M - R(A). Then M = 0.

Proof. Clear since R(A)Y = 0 for some N. O

Corollary 6. Assume I C kI is an admissible ideal and A = kI'/I. Then any finite-dimensional
A-module has a finite filtration with quotients S;, i € I'.

Now let us prove that representation theory of finite-dimensional algebras reduces to the
study of path algebras with admissible relations (over an algebraically closed field).

Let us denote by proj—A the category of finite-dimensional projective right A-modules.
Then we have

Proposition 7. Let A = kI'/I be the path algebra with admissible relations. Then the Auslander-
Reiten quiver I'(proj—A) of the category proj—A is isomorphic to T'.

Proof. Recall the definition of the Auslander-Reiten quiver of a k-linear Krull-Schmidt category.
Its vertices are isomorphism classes of indecomposable objects, number of arrows from X to Y
is the dimension of the space

Ir(X,Y) = R(X,Y)/R*X,Y),

where R denotes the radical of the given category.
In our case, indecomposable objects in proj— A are exactly the modules P;, i € I'y. Further,
we have by Proposition 4

R(P,;, P;) = (paths of length > 1 from i to j)/L;i

and
R?(P;, P;) = (paths of length > 2 from i to j)/L;;,
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hence

R(P;, P)[R*(P;, Fy) =
= (paths of length > 1 from i to j)x/(paths of length > 2 from i to j)x =

= (paths of length 1 from i to j)x = (arrows from i to j)x.

Thus the dimension of Irr(P;, P;) equals to the number of arrows from ¢ to j in I'. m

Definition 8. A finite-dimensional k-algebra A is called elementary if A/R(A) = []k.

From lecture 3 it follows that A is elementary iff the right A-module A decomposes as
A = @ P, where Py,..., P, are indecomposable pairwise non-isomorphic modules and for
all 7 one has (End P;)/R(End P;) = k.

Note that any elementary algebra is basic. Also we have

Proposition 9. Suppose k is algebraically closed. Then a finite-dimensional algebra A is basic
if and only if it is elementary.

Proof. Recall that an algebra A is basic iff the right A-module A decomposes as A = &}, P,
where P;,..., P, are indecomposable pairwise non-isomorphic modules. Hence it suffices to
check that any division algebra T'(P;) := (End P;)/R(End P;) is just k. But T'(P;) is a finite-
dimensional division k-algebra, it must be k since k is algebraically closed. O

Theorem 10 (Gabriel). Let A be an elementary finite-dimensional k-algebra. Then A is iso-
morphic to kI'/I where T is a finite quiver and I is an admissible ideal. Moreover, such quiver
I' is unique.

Proof. Uniqueness of I' follows from Proposition 7. Let us prove the first assertion.
Let A= @& | P; be the decomposition into indecomposable projective modules, then

A = Endpoq—a A = @, j Hom(P;, Fj).

Since A is elementary, for any ¢ one has End P, = k@ R(End P;). Denote by e; € A the element
1p, € End P, C A, then ey, ..., e, € A are orthogonal idempotents.

Let Ty := {1,...,n}. For any i,; take dimy(e;(R(A)/R(A)?)e;) arrows from i to j. The
finite quiver I' is ready!

Choose bases in the vector spaces e;(R(A)/R(A)?)e;, choose their lifts to e;R(A)e;. Define
a homomorphism f: kI' = A by sending e; € kI" to e; € A and any arrow from i to j in I to
the corresponding element in e; R(A)e;.

Let us check that f is surjective. We see that f sends R(kI') to R(A) and thus R(kI")™ to
R(A)™ for any m > 1. The map

S R(KD)™/R(KL)™ ! — R(A)™/R(A)™ !

induced by f is a bijection for m = 0 (clear) and m = 1 (by the construction of I'), and thus f,,
is epimorphic for any m > 0. Consequently, f induces surjective maps kI'/R(kI")™ — A/R(A)™
for any m > 1, which are isomorphisms for m = 1, 2. Since R(A) is a radical, one has R(A)N =0
for some N. It follows that f is surjective.

Let I = ker f, then A = kI'/I. It remains to check that I is admissible. First, f(R(k[')") C
R(A)N = 0 by the above, hence R(kI")Y C I. Also, the map kI'/R(kI")2 — A/R(A)? induced
by f is an isomorphism, hence I C f~'(R(A)?) = R(kT")>. O



