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On quivers and their representations1

By definition, a quiver Γ is an oriented graph. It consists of a set Γ0 of vertices and a set
Γ1 of edges (also called arrows). For any arrow a ∈ Γ1 we denote by s(a) its source and by t(a)
its target. Today we will consider only finite quivers, that is, the sets Γ0 and Γ1 are finite.

A representation of a quiver Γ over a field k is by definition a collection (Mi, i ∈ Γ0;ma, a ∈
Γ1), where Mi are vector spaces and ma : Ms(a) → Mt(a) are linear maps. A representation is
finite-dimensional if all Mi are finite-dimensional. A morphism of representations (Mi,ma) →
(Ni, na) is a collection (fi, i ∈ Γ0), where fi : Mi → Ni are linear maps obeying equalities

ft(a)ma = nafs(a)

for any a ∈ Γ1. Representations of Γ over k form an abelian category which we denote by RepkΓ.
Also one can consider contravariant representations of Γ, where linear maps go in the oppo-

site direction. If we denote the quiver Γ with all the arrows reversed by Γop, then the category
of contravariant representations of Γ is just RepkΓ

op.
A path from i0 ∈ Γ0 to in ∈ Γ0 is by definition a sequence of arrows a1, . . . , an such that

s(a1) = i0, t(an) = in and t(ak) = s(ak+1) for all k = 1, . . . , n − 1. Such path is written as
p = anan−1 · . . . · a1, it is said to have source s(p) = i0, target t(p) = in and length n. Clearly,
any arrow is a path of length 1. Also, by definition for any i ∈ Γ0 we have a path of length 0
from i to i, denoted by ei.

The path algebra kΓ of Γ is defined as follows. As a k-vector space, it has the basis formed by
all paths in Γ. The composition law is defined on basic elements p = an . . . a1 and q = bm . . . b1

by pq = an . . . a1bm . . . b1 if t(q) = s(p) and pq = 0 otherwise. The algebra kΓ is associative, it
has the identity 1 =

∑
i∈Γ0

ei. The path algebra is finite-dimensional if and only if Γ has no
oriented cycles. The algebra kΓ is usually non-commutative. Also, kΓ has a grading by the path
length: kΓ = ⊕n>0(kΓ)n.

Let R = R(kΓ) = ⊕n>0(kΓ)n ⊂ kΓ be the subspace spanned by paths of positive length.
Clearly, R is a two-sided ideal. One has an algebra isomorphism kΓ/R(kΓ) ∼=

∏
i∈Γ0

k, hence kΓ
is a basic algebra.

Elements ei, i ∈ Γ0 form a complete family of orthogonal idempotents: it means that

(1) e2
i = ei, eiej = 0 for i 6= j and

∑
i

ei = 1.

Instead of representations one can consider modules over path algebras. For a right kΓ-
module M and i ∈ Γ0 denote

Mi := M · ei ⊂M.

Formulas (1) imply the equality of vector spaces M = ⊕i∈Γ0Mi. For any arrow i
a−→ j the right

multiplication M → M sends Mj to Mi and other Mk-s to 0. Thus we get a contravariant
representation of Γ. Vice versa, for any contravariant representation (Mi,ma) of Γ consider the
vector space M = ⊕iMi. It is a right kΓ-module: let idempotents ei acts by projectors to Mi,
let an arrow a : i→ j act by ma on Mj and by 0 on other Mk-s. This action extends to a right
kΓ action on M . This gives a proof of

Proposition 1. One has equivalences

RepkΓ ∼= kΓ−Mod;RepkΓ
op ∼= Mod−kΓ.

1By technical reasons these notes are typed in English.
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We prefer to use right modules/contravariant representations. By default, mo-
dules are right modules.

Let us consider the following kΓ-modules.
For any i ∈ Γ0 let Si be the representation of Γ such that (Si)i = k, (Si)j = 0 otherwise, all

arrows act by zero. Let Pi = eikΓ ⊂ kΓ be the cyclic submodule generated by ei.

Proposition 2. 1. Modules Si are simple and pairwise non-isomorphic.

2. One has kΓ ∼= ⊕i∈Γ0Pi. Modules Pi are graded, projective, indecomposable and pairwise
non-isomorphic.

3. For any right kΓ-module M one has Hom(Pi,M) ∼= Mi. In particular, Hom(Pi, Sj) = δijk.

4. Hom(Pi, Pj) = (Pj)i = 〈paths from i to j〉k.
Proof. (1) is clear.

(2) Identities (1) imply that kΓ ∼= ⊕i∈Γ0Pi, hence Pi-s are projective. Any Pi is graded as a
submodule in kΓ generated by a homogeneous element ei. One has Pi/PiR(kΓ) ∼= Si hence Pi-s
are pairwise non-isomorphic.

(3) To any homomorphism f : Pi → M one can associate an element f(ei) ∈ Mi. This
element defines f uniquely. Moreover, any m ∈ Mi can be such an image for some f . Indeed,
consider the homomorphism f̄ : kΓ→M given by f̄(x) = mx and restrict it to Pi ⊂ kΓ, denote
the restriction by f . Then f(ei) = mei = m.

(4) follows from (3) because (Pj)i = ejkΓei = 〈paths from i to j〉k.

By a relation in Γ we mean an element in kΓ of the form
∑n

i=1 λipi where λi ∈ k and
p1, . . . , pn are paths with common source and target. Alternatively, we can consider a two-sided
ideal I ⊂ kΓ. Since I = ⊕i,j∈Γ0eiIej, any ideal is generated (over k) by relations.

For an ideal I ⊂ kΓ a path algebra with relations is defined as kΓ/I. Today we will denote
this algebra by A. We usually use the same notations for elements in kΓ and their images in A.
In particular, we have a complete system of orthogonal idempotents ei, i ∈ Γ0 in A.

For any i, j ∈ Γ0 we denote (kΓ)ij := eikΓej ⊂ kΓ, Iij := eiIej ⊂ I and Aij = eiAej ⊂ A,
these are linear subspaces. We have kΓ = ⊕ij(kΓ)ij, I = ⊕ijIij and A = ⊕i,jAij. Consequently,

Aij = (kΓ)ij/Iij,

it is the space of paths from j to i modulo some relations.
As we shall see, one can restrict to admissible ideals in path algebras.

Definition 3. An ideal I ⊂ kΓ is called admissible if R(kΓ)2 ⊃ I ⊃ R(kΓ)N for some N .

For an admissible ideal the path algebra A with relations is finite-dimensional. Note also
that zero ideal in kΓ is admissible iff Γ has no oriented cycles.

Further we will assume that ideal I is admissible.
Let R(A) := R(kΓ)/I ⊂ A, this is a nilpotent ideal. Moreover, A/R(A) ∼= kΓ/R(kΓ) ∼=∏

i∈Γ0
k, hence R(A) is the radical of A. Also it follows that A is a basic algebra.

In view of Proposition 1, modules over A correspond to those representations of Γ that obey
relations from I. This gives an equivalence of certain categories.

Let M be a module over A. For any i ∈ Γ0 we denote by Mi the subspace Mei ⊂ M . As
above, one has a decomposition of k-vector spaces

M = ⊕i∈Γ0Mi.

Simple kΓ-modules Si satisfy all relations from I hence Si is an A-module. Also, let Pi :=
eiA ⊂ A, this is a right A-module.
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Proposition 4. Assume I ⊂ kΓ is an admissible ideal and A = kΓ/I. Then

1. Modules Si are simple and pairwise non-isomorphic. Any simple A-module is one of these.

2. One has A ∼= ⊕i∈Γ0Pi. Modules Pi are projective, indecomposable and pairwise non-
isomorphic. Any indecomposable projective A-module is one of these.

3. For any right A-module M one has Hom(Pi,M) ∼= Mi. In particular, Hom(Pi, Sj) = δijk.

4. Hom(Pi, Pj) = (Pj)i = 〈paths from i to j〉k/Iji.

Proof. (1) Only the last assertion in not straightforward. It follows from a more general fact:
any finite-dimensional A-module has a filtration with quotients Si. Indeed, let M be a such
module. Consider the sequence M ⊃ M · R(A) ⊃ M · R(A)2 ⊃ . . . ⊃ M · R(A)N = 0. Any its
quotient is a module annihilated by R(A), thus is a direct sum of Si-s. Refining this filtration
we get a filtrations with quotients Si-s.

The proof of (2) is the same as in Proposition 2. To see that Pi is indecomposable, use that
Pi/Pi · R(A) ∼= Si is indecomposable and Lemma 5 below. To see that any indecomposable
projective A-module is isomorphic to some Pi, use Krull-Schmidt theorem.

(3),(4) are similar to those of Proposition 2.

Lemma 5 (“Nakayama’s Lemma”). Assume I ⊂ kΓ is an admissible ideal and A = kΓ/I. Let
M be an A-module such that M = M ·R(A). Then M = 0.

Proof. Clear since R(A)N = 0 for some N .

Corollary 6. Assume I ⊂ kΓ is an admissible ideal and A = kΓ/I. Then any finite-dimensional
A-module has a finite filtration with quotients Si, i ∈ Γ0.

Now let us prove that representation theory of finite-dimensional algebras reduces to the
study of path algebras with admissible relations (over an algebraically closed field).

Let us denote by proj−A the category of finite-dimensional projective right A-modules.
Then we have

Proposition 7. Let A = kΓ/I be the path algebra with admissible relations. Then the Auslander-
Reiten quiver Γ(proj−A) of the category proj−A is isomorphic to Γ.

Proof. Recall the definition of the Auslander-Reiten quiver of a k-linear Krull-Schmidt category.
Its vertices are isomorphism classes of indecomposable objects, number of arrows from X to Y
is the dimension of the space

Irr(X, Y ) := R(X, Y )/R2(X, Y ),

where R denotes the radical of the given category.
In our case, indecomposable objects in proj−A are exactly the modules Pi, i ∈ Γ0. Further,

we have by Proposition 4

R(Pi, Pj) = 〈paths of length > 1 from i to j〉k/Iji

and
R2(Pi, Pj) = 〈paths of length > 2 from i to j〉k/Iji,
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hence

R(Pi, Pj)/R2(Pi, Pj) ∼=
∼= 〈paths of length > 1 from i to j〉k/〈paths of length > 2 from i to j〉k ∼=

∼= 〈paths of length 1 from i to j〉k = 〈arrows from i to j〉k.

Thus the dimension of Irr(Pi, Pj) equals to the number of arrows from i to j in Γ.

Definition 8. A finite-dimensional k-algebra A is called elementary if A/R(A) ∼=
∏

k.

From lecture 3 it follows that A is elementary iff the right A-module A decomposes as
A = ⊕n

i=1Pi where P1, . . . , Pn are indecomposable pairwise non-isomorphic modules and for
all i one has (EndPi)/R(EndPi) ∼= k.

Note that any elementary algebra is basic. Also we have

Proposition 9. Suppose k is algebraically closed. Then a finite-dimensional algebra A is basic
if and only if it is elementary.

Proof. Recall that an algebra A is basic iff the right A-module A decomposes as A = ⊕n
i=1Pi

where P1, . . . , Pn are indecomposable pairwise non-isomorphic modules. Hence it suffices to
check that any division algebra T (Pi) := (EndPi)/R(EndPi) is just k. But T (Pi) is a finite-
dimensional division k-algebra, it must be k since k is algebraically closed.

Theorem 10 (Gabriel). Let A be an elementary finite-dimensional k-algebra. Then A is iso-
morphic to kΓ/I where Γ is a finite quiver and I is an admissible ideal. Moreover, such quiver
Γ is unique.

Proof. Uniqueness of Γ follows from Proposition 7. Let us prove the first assertion.
Let A ∼= ⊕n

i=1Pi be the decomposition into indecomposable projective modules, then

A ∼= Endmod−AA ∼= ⊕i,j Hom(Pi, Pj).

Since A is elementary, for any i one has EndPi = k⊕R(EndPi). Denote by ei ∈ A the element
1Pi
∈ EndPi ⊂ A, then e1, . . . , en ∈ A are orthogonal idempotents.
Let Γ0 := {1, . . . , n}. For any i, j take dimk(ej(R(A)/R(A)2)ei) arrows from i to j. The

finite quiver Γ is ready!
Choose bases in the vector spaces ej(R(A)/R(A)2)ei, choose their lifts to ejR(A)ei. Define

a homomorphism f : kΓ → A by sending ei ∈ kΓ to ei ∈ A and any arrow from i to j in Γ to
the corresponding element in ejR(A)ei.

Let us check that f is surjective. We see that f sends R(kΓ) to R(A) and thus R(kΓ)m to
R(A)m for any m > 1. The map

fm : R(kΓ)m/R(kΓ)m+1 → R(A)m/R(A)m+1

induced by f is a bijection for m = 0 (clear) and m = 1 (by the construction of Γ), and thus fm
is epimorphic for any m > 0. Consequently, f induces surjective maps kΓ/R(kΓ)m → A/R(A)m

for any m > 1, which are isomorphisms for m = 1, 2. Since R(A) is a radical, one has R(A)N = 0
for some N . It follows that f is surjective.

Let I = ker f , then A ∼= kΓ/I. It remains to check that I is admissible. First, f(R(kΓ)N) ⊂
R(A)N = 0 by the above, hence R(kΓ)N ⊂ I. Also, the map kΓ/R(kΓ)2 → A/R(A)2 induced
by f is an isomorphism, hence I ⊂ f−1(R(A)2) = R(kΓ)2.
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