Обыкновенные дифференциальные уравнения, задачи В.И. Арнольда

В квадратных скобках указано число очков за задачу.

Рассмотрим дифференциальное уравнение

$$\ddot{x} = -\sin x + \varepsilon \cos t.$$

В первых шести задачах предполагается, что $\varepsilon = 0$.

 $3a\partial a$ ча 1. Линеаризовать это уравнение в точке $x=\pi, \dot{x}=0$ [1].

Задача 2. Устойчиво ли это положение равновесия [1]?

 $\it Задача~3$. Найти матрицу Якоби преобразования фазового потока за время $t=2\pi$ в точке $x=\pi,\,\dot{x}=0$ [3].

 $3a\partial aua$ 4. Найти производную решения с начальным условием $x=\pi, \dot{x}=0$ по параметру ε при $\varepsilon=0$ [5].

 $3a\partial aua$ 5. Нарисовать графики решения и его производной по t при начальном условии $x=0,\,\dot{x}=2$ [3].

Задача 6. Найти это решение [3].

Пусть (*) – уравнение в вариациях вдоль указанного в пятой задаче решения.

Задача 7. Имеет ли уравнение (*) неограниченные решения [8]?

Задача 8. Имеет ли уравнение (*) ненулевые ограниченные решения [8]?

Задача 9. Найти определитель Вронского фундаментальной системы решений уравнения (*), зная, что W(0) = 1 [5].

Задача 10. Выписать явно уравнение (*) и решить его [10].

 $3a\partial a$ ча 11. Найти собственные числа и векторы оператора монодромии для уравнения в вариациях вдоль решения с начальным условием $x=\pi/2, \ \dot{x}=0 \ (\varepsilon=0)$ [16].

 $3a\partial a$ ча 12. Доказать, что исходное уравнение имеет 2π -периодическое решение, гладко зависящее от ε и обращающееся в $x=\pi$ при $\varepsilon=0$ [6].

 $3a\partial a$ ча 13. Найти производную этого решения по ε при $\varepsilon = 0$ [6].

Рассмотрим уравнение

$$u_t + uu_x = -\sin x$$
.

Задача 14. Написать уравнение характеристик [2].

 $3a\partial a$ ча 15. Найти наибольшее значение t, при котором решение задачи Коши с $u|_{t=0}=0$ продолжается на [0,t[8]].