Дробно-линейные преобразования

- \triangleright Будем отождествлять комплексное число z = x + yi с точкой Z = (x, y) плоскости.
 - **Задача 7.1.** а) Убедитесь в том, что преобразование плоскости $z \mapsto az \ (a \neq 0)$ является *поворотной гомотетией* (т. е. композицией поворота и гомотетии c *тем жее центром*).
 - б) При каких a и b преобразование плоскости $z \mapsto az + b \ (a \neq 0)$ является поворотной гомотетией? С каким центром? Когда оно является поворотом?
 - в) Докажите, что композиция поворотных гомотетий и параллельных переносов является либо поворотной гомотетией, либо параллельным переносом. Докажите, что композиция поворотов и параллельных переносов является либо поворотом, либо параллельным переносом.
 - **Задача 7.2.** а) Докажите, что точки Z_1, Z_2, Z_3 лежат на одной прямой тогда и только тогда, когда их *простое отношение* $\frac{z_1-z_3}{z_2-z_3}$ вещественно. Каков геометрический смысл аргумента и модуля простого отношения трех произвольных точек?
 - б) Докажите, что точки Z_1, Z_2, Z_3, Z_4 лежат на обобщенной окружности тогда и только тогда, когда их ∂ войное отношение $\frac{z_1-z_3}{z_2-z_3}: \frac{z_1-z_4}{z_2-z_4}$ вещественно.
 - в) Выведите из предыдущего пункта *теорему Птолемея*: четырехугольник ABCD вписанный тогда и только тогда, когда произведение диагоналей равно сумме произведений противоположных сторон, т. е. $AB \cdot CD AC \cdot BD + BC \cdot AD = 0$.
 - **Задача 7.3.** Проверьте, что отображение $z\mapsto \frac{az+b}{cz+d}$ является биекцией $\bar{\mathbb{C}}$ тогда и только тогда, когда $ad-bc\neq 0$.
- ightharpoonup Такие преобразования называются *дробно-линейными*. Группа всех дробно-линейных преобразований обозначается $PGL_2(\mathbb{C})$.
 - **Задача 7.4.** Какие из дробно-линейных преобразований сохраняют точку ∞? Сохраняют ли они простое отношение?
 - **Задача 7.5.** Докажите, что группа $PGL_2(\mathbb{C})$ порождена преобразованиями вида $z \mapsto az + b$ и преобразованием $z \mapsto 1/z$.
- \triangleright Напомним, что преобразование $z\mapsto 1/\bar{z}$ является примером инверсии.
 - **Задача 7.6.** Докажите, что любая инверсия может быть записана в виде $z \mapsto \frac{a\bar{z} + b}{c\bar{z} + d}$.
 - Задача 7.7. Изучите про инверсии и про дробно-линейные преобразования, всегда ли они а) сохраняют двойные отношения; б) переводят обобщенные окружности в обобщенные окружности; в) сохраняют углы между обобщенными окружностями.
 - **Задача 7.8.** Докажите, что действие группы $PGL_2(\mathbb{C})$ транзитивно а) на обобщенных окружностях; б) на тройках (различных) точек $\bar{\mathbb{C}}$.
 - Задача 7.9. а) Какие из дробно-линейных преобразований сохраняют вещественную прямую? б) Опишите все дробно-линейные преобразования, сохраняющие верхнюю полуплоскость. в) Опишите все дробно-линейные преобразования, сохраняющие внутренность единичной окружности. г) Докажите, что две последние группы изоморфны.

¹Т.е. на окружности или на прямой.