
3. Algebraic Number Fields

Remark. All the rings are supposed to be commutative with identity, ring homomorphisms
send 1 to 1.

Definition 3.1 (cf. 2.3). Suppose B/A is an extension of the rings (i.e. A ⊂ B).
B is called integral over A iff all the elements of B are integral over A.

Definition 3.2 (cf. 2.4). B is called finite over A iff B is finitely generated as an
A-module.

Theorem 3.3. (cf. 2.5). If B/A is finite then it is integral.

Proof. Since B/A is finite there exists a surjective homomorphism φ : An → B. Suppose
b ∈ B. Multiplication with b defines an A-linear endomorphism of the A-module B which

could be lifted to an endomorphism
∼
b of An (choose a basis {xi} of An and define

∼
b (xi)

to be equal to some φ - preimage of bφ(xi)). Let P (T ) be the characteristic polynomial of
∼
b, this is a monic polynomial with coefficients in A. By the Cayley - Hamilton theorem

P (
∼
b) = 0. Therefore ∀x ∈ An 0 = P (

∼
b (x)) = φ(P (

∼
b (x))) = P (φ(

∼
b (x))) = P (bφ(x)).

Since φ is surjective ∃x ∈ An such that φ(x) = 1 hence P (b) = 0 �

Theorem 3.4. (cf. 2.7). If A ⊂ B ⊂ C. If B/A and C/B are both finite, same is
C/A.

Proof. Close to that of the Theorem 2.7 (use sets of generators instead of bases) �

Theorem 3.5. (cf. 2.8). If B is integral over A and finitely generated as an A-algebra
then B/A is finite.

Proof. Suppose B = A[β] where β is integral over A. By the definition this means
that ∃P (T ) ∈ A[T ] monic such that P (β) = 0. If degP = d then βd is a linear combina-
tion of smaller powers of β. Clearly the same is true for greater powers of β hence the set
{1, β, . . . , βd−1} generates B as an A-module. Now one may use induction based on the
Theorem 3.4 �

Definition-Theorem 3.6. Suppose B/A is an extension of the rings. The subset of
B consisting of all elements which are integral over A is called the integral closure of A
in B. This subset is a subring of B.
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Proof. Suppose α, β ∈ B are integral over A. The subring A[α, β] ⊂ B is finite over A by
the theorems 3.5 & 3.4 therefore integral over A by the Theorem 3.3. Hence α − β and
αβ are integral over A �

Theorem 3.7. Suppose O is an integrally closed Noetherian integral domain (we use the
abbreviation NICD - ”Noetherian integrally closed domain”), k its field of fractions, K/k
a finite separable extension. Then
1) The integral closure of O in K (notation OK) is finite over O and contains some basis
of the k-vector space K.
2) If O is a principal ideal domain then OK is a free O-module with n = [K : k] genera-
tors.
3) OK is also a NICD.

Lemma. Suppose O is a Noetherian ring, N ⊂ On an O-submodule. Then N is finitely
generated. If O is a principal ideal ring then N is free of rank ≤ n.

Proof of the Lemma. Use induction. Let On−1 be the submodule of On generated by the

first n−1 coordinate vectors, Nn−1
def
= N ∩On−1. Let I be the ideal in O obtained by the

projection of N to the last coordinate. Suppose a1, . . . , ar generate I. For each 1 ≤ i ≤ r
choose yi ∈ N such that the last coordinate of yi equals ai. Then N = Nn−1 + 〈{yi}〉
which proves the first statement of the Lemma. To prove the second statement it suffices
to point out that I is generated by one element a1 hence N = Nn−1 ⊕ 〈y1〉, rk (N) being
equal either to rk(Nn−1) (if a1 = 0) or to rk(Nn−1) + 1 otherwise �

Proof of the Theorem. 1) -2). If x ∈ K then x is algebraic over k hence ∃P (T ) =
d∑
i=0

aiT
i ∈

k[T ] such that P (x) = 0. Multiplying P with the product of the denominators of all co-
efficients one may suppose that ∀i ai ∈ O. Then multiplying the equation P (x) = 0 with
ad−1
d one gets an integral equation for adx. Hence any basis of the vector space K over k

after multiplying with suitable elements of O will consist of integral elements of K.
Now consider the trace bilinear form Tr : K × K → k which is nondegenerate by

the Theorem 2.53. For any O-submodule N in K define N∨
def
= {y ∈ K such that

∀x ∈ N Tr(xy) ∈ O}. Suppose {ei} is a basis of K consisting of integral elements (this
one has just been constructed) and let N be the free O-submodule of OK generated by the
{ei}. Let {fj} be the dual basis to {ei} (i.e. Tr(eifj) = δji ). Then N∨ coincides with the
free O-submodule of K generated by {fj} (easy hometask). Since N ⊂ OK O∨K ⊂ N∨.

Clearly for any x integral over O and σ ∈ Σ
k/k
K/k σ(x) is also integral over O thus Tr(x)
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is integral over O. But Tr(x) ∈ k and O is integrally closed hence Tr(OK) ⊂ O. In
particular, OK ⊂ O∨K . Finally one may conclude that OK ⊂ N∨ therefore by the Lemma
OK is finitely generated as an O-module and is free of rank ≤ n if O is a principal ideal
ring. Since OK contains the basis of K over k in the latter case the rank equals n.
3) Extending the Lemma one concludes that if N ⊂ M are O-modules and M is finitely
generated then N also is. Indeed, if φ : On → M is surjective then N = φ(φ−1(N)),
φ−1(N) being finitely generated by the Lemma. Clearly OK is a domain. By 1) OK is
a finitely generated O-module hence any ideal I ⊂ OK is also finitely generated as an
O-module. This of course implies I is finitely generated as an OK-module hence OK is
Noetherian. Now suppose that x ∈ K is integral over OK . This means that the ring OK [x]
is finitely generated as an OK-module. Since OK itself is a finitely generated O-module
this implies OK [x] is a finitely generated O-module. By the extended Lemma same is
O[x], hence x is integral over O thus by definition x ∈ OK , so OK is integrally closed �

The next two definitions are valid for an arbitrary integral domain O with the field
of fractions k.

Definition 3.8. Suppose I, J are O-submodules in k. Then I−1 def
= {x ∈ k such that

xI ⊂ O}, O(I)
def
= {x ∈ k such that xI ⊂ I}, I + J

def
= {x+ y, x ∈ I, y ∈ J}, IJ

def
=

{
∑
xiyi, a finite sum, xi ∈ I, yi ∈ J}.

Definition-Theorem 3.9. Suppose p ⊂ O is a prime ideal. Consider the map I 7→ I∩O:
{ideals of Op) → (ideals of O). If I is prime then I ∩ O is prime. If I 6= {0} (resp.
nontrivial) then I ∩ O 6= {0} (resp. nontrivial). For any O-submodule J ⊂ k let

φp(J) (or Jp)
def
= JOp. Then (I ∩ O)p = I.

Proof. Any z ∈ Op is of the form z =
x

y
, y 6∈ p whence the Theorem �

In what follows O (or Ok) will always be a NICD.

Theorem 3.10. Suppose p ⊂ O is a prime ideal. Then the local ring Op is a NICD.

Proof. Op ⊂ k hence it has no zero divisors. Also it contains 1 by definition. Sup-
pose I ⊂ Op is an ideal. The ideal (I ∩O) ⊂ O is finitely generated as an O-module. By
the previous theorem the same set of generators generates I as an Op-module, hence Op is
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Noetherian. Further, suppose x ∈ k is integral over Op. This means that xm+
m−1∑
i=0

aix
i = 0

for some {ai ∈ Op}. Let a be the product of the denominators of the ai, then a 6∈ p.
Clearly ax is integral over O hence ax ∈ O. This implies x ∈ Op therefore Op is integrally
closed �

Definition 3.11. An O-submodule I ⊂ k is called a fractional ideal (f.i.) iff I 6= {0} and
I−1 6= {0}.

Theorem 3.12. Suppose I ⊂ k is an O-submodule. Then I is a f.i. ⇔ I is nonzero and
finitely generated. If this is the case then I−1 is a f.i., O(I) = O. If I, J are f.i.’s then
I + J, IJ, I ∩ J are also f.i.’s.

Proof. If I is a f.i. then by definition ∃x ∈ k such that xI ⊂ O. Then xI is an
ideal in O thus is finitely generated therefore I also is. Conversely, if I is finitely gen-
erated then the product of the denominators of the generators is a nonzero element of
I−1. By definition any element of I is an element of (I−1)−1 hence I−1 is a f.i. Now
suppose z ∈ O(I). Choose nonzero elements x ∈ I and y ∈ I−1. Then yxz ∈ yI ⊂ O.
Therefore xy ∈ (O(I))−1 ⇒ (O(I))−1 6= {0}. The ring O[z] is an O-submodule of O(I)
which implies (O(I))−1 ⊂ (O[z])−1. Therefore the latter module is nonzero, so O[z] is a
f.i. hence finitely generated. This means that z is integral over O thus z ∈ O. The rest
is clear �

Definition 3.13. A NICD O i called a discretely valuated ring (d.v.r.) iff there ex-
ists exactly one nonzero prime ideal p ⊂ O.

Theorem-Definition 3.14. Any d.v.r. O is a principal ideal ring. There exists a
group isomorphism v : k∗/O∗ →∼ Z such that ||x|| = s−v(x), s > 1 defines a discrete
nonarchimedean absolute value on k, O and p being, respectively, the valuation ring and

the valuation ideal (cf. 1.3). For any f.i. I ⊂ k v(I)
def
= inf

a∈I
v(a).

Proof. Step 1. First prove that p−1 6= O. Indeed, let I be a maximal element in the
set of all ideals in O enjoying this property (ordered by inclusion). The set just defined
is nonempty (it contains the zero ideal) and any linearly ordered subset has an upper
bound (a chain of ideals in the Noetherian ring stabilizes) hence some I exists by the
Zorn Lemma. We now will prove that I is a prime ideal therefore I = p (since O−1 = O
I cannot be trivial). Indeed, suppose that xy ∈ I while x ∈ O�I and y ∈ O�I. By
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the definition of I there exists z 6∈ O such that zI ⊂ O, in particular, zxy ∈ O. This
implies zx ∈ ((y) + I)−1 hence zx ∈ O (otherwise I were not a maximal element). The
last inclusion means that z ∈ ((x) + I)−1 which again contradicts the assumption.
Step 2. Now prove that p−1p = O. Indeed, p ⊂ p−1p ⊂ O. Since p is the unique nonzero
prime ideal it is maximal. By the Theorem 3.12 O(p) = O while by the first step p−1 6= O,
thus p−1p 6= p whence the statement.

Step 3. p is a principal ideal. Indeed, by the second step p−1 ⊂ O(
∞⋂
i=1

pi) hence by the

first step
∞⋂
i=1

pi = (0). Therefore there exists π such that π ∈ p, π 6∈ p2. Using step 2

one gets (π)p−1 ⊂ O while (π)p−1 6⊂ p. Since p is the only maximal ideal this implies
(π)p−1 = O. Multiplying with p leads to (π) = p.

Step 4. Since
∞⋂
i=1

(πi) = (0) one may for any a ∈ O�{0} define v(a)
def
= ( maximal i

such that πi| a). If v(a) = 0 then the ideal (a) is not contained in p, but p is the only
maximal ideal thus a ∈ O∗. Now it is easy to see that the function v extended to k∗

with the formula v(numerator)-v(denominator) enjoys the properties announced in the
formulation of the Theorem. For any f.i. I one may also define v(I) = inf

a∈I
v(a). Since I is

finitely generated v(I) is finite. If I ⊂ O then π−v(I)I is an ideal containing an invertible
element thus trivial. Therefore I = (πv(I)) which ends the proof �

Theorem-Definition 3.15. A NICD O is called a Dedekind domain iff, equivalently,
1) Any nonzero prime ideal p ⊂ O is maximal, or
2) For any nonzero prime ideal p ⊂ O the local ring Op is a d.v.r., or
3) For any f.i. I ⊂ k I−1I = O.

Proof. 1) ⇒ 2) By the Theorem 3.7 Op is a NICD. Suppose I ⊂ Op is a nonzero prime
ideal. By definition pOp is the only maximal ideal in Op thus I ⊂ pOp. Therefore
I ∩O ⊂ pOp ∩O = p. By the Theorem 3.9 I = (I ∩O)Op, I ∩O being a nonzero prime
ideal in O. By the assumption 1) I ∩ O = p hence I = pOp �
2) ⇒ 3) Suppose I ⊂ k is a f.i. Choose a prime ideal p ⊂ O. By the assumption Op

is a d.v.r, k being its field of fractions, hence the function vp : k∗ → Z is defined. Let
{a1, . . . , ar} be a set of generators of the O-module I. Then vp(I) = vp(ai) for some i,
one may suppose that i = 1 without loss of generality. Then ∀i a−1

1 ai ∈ Op. Let y be the
product of the denominators of all a−1

1 ai, then y 6∈ p. ∀i ya−1
1 ai ∈ O hence ya−1

1 ∈ I−1

thus y ∈ I−1I. Therefore I−1I 6⊂ p. Since this holds for an arbitrary p, I−1I = O �
3) ⇒ 1) Suppose I ⊂ O is a nonzero prime ideal which is contained in the maximal
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ideal p. Then Ip−1 ⊂ O. By the assumption p−1p = O thus (Ip−1)p = I. SInce I is a
prime ideal either (Ip−1) ⊂ I or p ⊂ I. Multiplying the first formula with I−1p and using
the assumption three times one gets the contradiction (namely O ⊂ p) hence the second
formula holds �

Remark. The condition 3) is in fact very strong: it is easy to prove that if it holds
in some integral domain the latter is a NICD hence a Dedekind domain.

Theorem-Definition 3.16. Suppose O is a Dedekind domain. Then the f.i.’s I ⊂ k
form a commutative group under multiplication (notation F(O)) which is freely generated
by the prime ideals p ⊂ O. If I ⊂ k is a f.i then I =

∏
p

pvp(I) which is a finite product.

∀p IOp = (pOp)
vp(I).

Proof. The group structure is clear after 3.15.3). Suppose I ⊂ O is a nontrivial nonzero
ideal. Then ∃p1 ⊂ O a maximal ideal such that I ⊂ p1 thus Ip−1

1 ⊂ O. If Ip−1
1

is nontrivial then there exists another (maybe the same) maximal ideal p2 such that
Ip−1

1 ⊂ p2 thus Ip−1
1 p−1

2 ⊂ O and so on. Since O is Noetherian the chain of ideals
I ⊂ Ip−1

1 ⊂ Ip−1
1 p−1

2 ⊂ . . . stabilizes hence one comes to the trivial ideal in finite number
of steps. Therefore F(O) is generated by the prime ideals p. Now choose some p and
consider the map φp : F(O) → F(Op), I 7→ Ip = IOp. This map is surjective by the
Theorem 3.9 and it is a group homomorphism by the construction. If q 6= p then q 6⊂ p by
the first definition of a Dedekind domain hence the Op-ideal φp(q) contains an invertible
element. This implies φp(q) is trivial therefore q ∈ ker(φp). The ring Op is a d.v.r. hence
by the Theorem 3.14 F(Op) is an infinite cyclic group generated by the Op-ideal pOp.
Clearly φp maps the subgroup of F(O) generated by p isomorphically on F(Op). This
ends the proof �

Remark. Suppose a ∈ k∗. Then vp(a) = vp(aO) hence vp(a) = 0 for all but a finite
number of ideals p.

Now suppose K/k is a finite separable extension of degree n, OK the integral closure
of O in K.

Definition 3.17 A finitely generated O-submodule of K which contains a basis of the
k-vector space K is called an O-lattice in K.

Remark. If n = 1 then the concept of O-lattice coincides with that of f.i.

6



Notation (cf. 3.9). Suppose N is an O-submodule in K, p ⊂ O a prime ideal. Then

Np
def
= NOp.

Theorem 3.18. Suppose N ⊂ K is an O-lattice, p ⊂ O a prime ideal.
1) If O is a principal ideal domain then N is a free O-module of rank n.
2) If N is an O-lattice then Np is a Op-lattice.

Proof. 1) By the Theorem 3.7. this holds for OK . Consider some basis of OK and
some set of generators of N . Let a be the product of the denominators of the coordinates
of generators in that basis. Then aN ⊂ OK hence aN is a free O-module of rank ≤ n
by the Lemma to the same theorem. Since aN contains a basis of K the rank equals n.
N ' aN as O-modules �
2) Clear �

Remark. In general N (even OK itself) needs not to be a free O-module.

Theorem 3.19. Suppose N ⊂ K is an arbitrary O-submodule. Then N =
⋂
p

Np.

Proof. ⊂ clear; ⊃ Suppose x ∈
⋂
p

Np. The set I = {a ∈ O such that ax ∈ N} is an ideal

in O. Since ∀p x ∈ Np (i.e x =
y

a
, y ∈ N, a 6∈ p) the ideal I contains elements outside

arbitrary p. This implies I is trivial hence 1 ∈ I �

For the rest of this chapter O will be a Dedekind domain. The basic example is O = Z.

Theorem-Definition 3.20. Index of the lattices. Suppose M and N are two O-lattices
in K. Then the index (M : N)O is an O-f.i. in k defined as follows:
1) If both M and N are free of rank n then (M : N)O = (detA), A being the matrix of
coordinates of the elements of the basis of N with respect to the basis of M .

2) Generally, (M : N)O
def
=
∏
p

pvp((Mp:Np)Op ).

Proof. Since change of either basis multiplies A with an invertible matrix with entries
from O, the determinant is multiplied with an element of O∗ thus not changing the index
as defined in 1). In the general case let {xi} be a basis of the vector space K over k which
is contained in M , {yj} same for N . Consider a set of generators of M . Since this is a
finite set, for all p but a finite number all the coordinates of its elements with respect to
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the basis {xi} are in Op, thus {xi} being an Op-basis of Mp. The same is true for {yj}
and N . This implies for all p but a finite number (Mp : Np) = (detA)p, A being the
matrix of the coordinates of the basis {yj} with respect to the basis {xi}. Clearly for all
p but another (possibly greater) finite number this ideal is trivial hence the product in
the definition 2) is finite �

Theorem 3.21. 1) (M : N)O(N : T )O = (M : T )O.
2) (M : M)O = O (the trivial f.i.).
3) Suppose N ⊂ M . Then (M : N)O ⊂ O, the equality holding iff M = N . If O = Z
then (M : N)Z is generated by the usual index (M : N).
4) If l : K → K is an invertible k-linear map then (l(M) : l(N))O = (M : N)O.

Proof. Immediate consequence of the definition and of the Theorem 3.16 �

Definition 3.22. Suppose N ⊂ K is an O-submodule. Then the dual module DO(N)
def
=

{y ∈ K such that ∀x ∈ N Tr(xy) ∈ O}.

Theorem 3.23. Suppose N,M ⊂ K are O-lattices. Then
1) If N = 〈{ei}〉 is a free O-module of rank n than DO(N) is also free of rank n generated
by the dual basis {fj}.
2) DO(N) is an O-lattice.
3) DO(DO(N)) = N .
4) (DO(N) : DO(M))O = (M : N)O.
5) Suppose p ⊂ O is a prime ideal. Then (DO(N))p = DOp(Np).

Proof. We start with the proof of 5). In fact both sides coincide with the set {y ∈ K
such that ∀x ∈ N Tr(xy) ∈ Op}. It looks natural to use the notation DOp(N) for this set
besides N is not a Op-module. Since N ⊂ Np, DOp(Np) ⊂ DOp(N). Since Tr is k-bilinear
DOp(N) ⊂ DOp(Np). For the same reason (DO(N))p ⊂ DOp(N). Finally, to prove that
DOp(N) ⊂ (DO(N))p one should consider an arbitrary y ∈ DOp(N) and then multiply it
with the product of the denominators of Tr(yxi), {xi} being a set of generators of the
O-module N , to obtain the element of DO(N) �
1) Hometask �
2) Let M = 〈{ei}〉, {ei} being some k-basis of K contained in N . Let a be the prod-
uct of the denominators of the coordinates of some set of generators of the lattice N
with respect to that basis. Then aN ⊂ M hence M ⊂ N ⊂ a−1M . This implies
DO(a−1M) ⊂ DO(N) ⊂ DO(M), therefore DO(N) is an O-lattice by 1) and by the
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Lemma to Theorem 3.7�
3) Clear for a free lattice, for the general case use 5) and the Theorem 3.19 �
4) Hometask for a free lattice; for the general case use 5) and the Theorem 3.16 �

Definition-Theorem 3.24. Suppose N is an O-lattice in K. The O - f.i. in k

dO(N)
def
= (DO(N) : N)O is called the discriminant of N . The notation dK/k is often

used for the dO(OK). The latter is an ideal in O.

Proof. Since OK ⊂ DO(OK) the Theorem 3.21.3) ends the proof �

Theorem 3.25. Suppose N,M ⊂ K are O-lattices. Then
1) If N = 〈{ei}〉 is a free O-module then dO(N) = (detTr(eiej)).
2) dO(N) = dO(M)(M : N)2

O.
3) Suppose N ⊂M . Then dO(N) ⊂ dO(M), the equality holding iff M = N .
4) dO(N) =

∏
p

pvp(dOp (Np)).

Proof. 1) Hometask �
2) An easy consequence of the theorems 3.21.1) and 3.23.4) �
3) This is a consequence of 2) and the Theorem 3.21.3) �
4) Use the definition of the index and the Theorem 3.23.5) �

Remark. If N is a free O-module the formula from 1) defines the element ∆O(N) ∈
k∗/(O∗)2 generating dO(N). If O = Z the notation ∆(N) (resp. ∆K for N = OK) is
used. Since (Z∗)2 = {1} ∆(N) (resp. ∆K) is an element of Q (resp. of Z).

Definition 3.26. The prime ideal P ⊂ OK lies over the prime ideal p ⊂ O (nota-
tion P | p) iff P ∩ O = p.

Theorem 3.27. 1) OK is a Dedekind domain.

2) Suppose p ⊂ O is a prime ideal. Then (OK)p(
def
= OKOp) is the integral closure of Op

in K.
3) For any prime ideal p ⊂ O there exists a prime ideal P ⊂ OK (not necessary unique)
such that P | p. Conversely, for any nonzero prime ideal P ⊂ OK P ∩ O 6= (0).
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Proof. 1) By the Theorem 3.7 OK is a NICD. Suppose P ⊂ OK is a nonzero prime
ideal. Let 0 6= x ∈ P. Then the minimal polynomial Px, k(T ) is monic with coefficients

in O. Since Px(x) = 0 its free term is an element of p
def
= P ∩ O. Since Px is irreducible

over k, p is nonzero. The intersection of the prime ideal with a subring is clearly prime,

thus p is prime and therefore maximal. This implies kp
def
= O/p is a field. Consider the

quotient ring OK/pOK . Since OK is a O-module of finite rank this ring is a kp-algebra
of finite dimension, P/pOK being a prime ideal in it, thus (OK/pOK)/(P/pOK) is a
finite-dimensional kp-algebra without zero divisors therefore a field. The identity map
OK → OK defines a surjective ring homomorphism OK/pOK → OK/P with the kernel
P/pOK , hence (OK/pOK)/(P/pOK) ' OK/P. This means that OK/P is a field hence
P is a maximal ideal �

2) x ∈ (OK)p means that x =
y

a
, y ∈ OK , a ∈ O, a 6∈ p. Since y ∈ OK , ym+

m−1∑
i=0

aiy
i = 0

for some {ai ∈ O} therefore xm +
m−1∑
i=0

ai

am−i
xi = 0 hence x is integral over Op. Conversely,

suppose x is integral over Op. Then xm +
m−1∑
i=0

ai

bi
xi = 0 (∀i bi 6∈ p). It is easy to check

that x
m−1∏
i=0

bi is integral over O �

3) The second statement has already been proved in 1). Now start with the prime ideal
p ⊂ O. Consider the ideal pOK ⊂ OK . Then pOK 6= OK (otherwise OK = p−1OK ⇒
p−1 ⊂ OK ⇒ p−1 ⊂ O which contradicts the properties of the Dedekind domain).This
implies there exists a maximal ideal P ⊂ OK such that pOK ⊂ P⇒ P lies over p �

Theorem-Definition 3.28. DO(OK) is an OK-f.i. in K containing OK . The differ-

ent (notation D or DK/k) is an ideal in OK defined by the formula D
def
= (DO(OK))−1.

Proof. Use the Theorem 3.23 2) and the definition of the dual lattice �

Theorem 3.29. Suppose x ∈ OK is a primitive element (i.e. K = k(x)), Px ∈ O[T ] its
minimal polynomial. Then
1) O[x] is an O-lattice in K.
2) DO(O[x]) = (P ′(x))−1O[x].
3) dO(O[x]) = (NK/k(P

′
x(x))) = (∆Px).

4) OK = O[x]⇔ DK/k = (P ′x(x)).
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Proof. 1) Clear since x is integral over O and primitive �

2) Suppose Px[T ] = T n +
n−1∑
i=0

aiT
i, ai ∈ O;

Px[T ]

T − x
= T n−1 +

n−2∑
j=0

bjT
j, bi ∈ K. Then

the two O-lattices 〈1, x, . . . , xn−1〉 and 〈b0, b1, . . . , bn−2, 1〉 coincide. Indeed, the system of
equations {a0 = −b0x; ai = bi−1 − xbi for 1 ≤ i ≤ n − 2, an−1 = bn−2 − x} provides
us with a linear expression of the elements bj via xi and vice versa with coefficients in O

(namely, bj =
n−1∑
i=j+1

aix
i−1−j + xn−1−j, xi may be reconstructed from these expressions

one by one). Now it is possible to calculate the dual basis for 〈b0, b1, . . . , bn−2, bn−1 =

1〉. Consider the set of polynomials {Pr(T ) ∈ k[T ], 0 ≤ r ≤ n − 1}, Pr(T )
def
=∑

σ∈Σ
k/k
K/k

(
Px(T )

T − σ(x)

)
σ(x)r

P ′x(σ(x))
− T r. Since Px is separable it has no common roots with

its derivative, hence the definition is correct (neither denominator equals zero). By the
construction each Pr has at least n different roots (namely, all σ(x)) being of the degree
≤ n − 1, therefore ∀r, 0 ≤ r ≤ n − 1, Pr = 0. On the other hand the direct calcula-

tion leads to Pr =
n−1∑
j=0

Tr

(
xr

P ′x(x)
bj

)
T j − T r, hence Tr

(
xi

P ′x(x)
bj

)
= δij. This means

that the dual lattice to one generated by bj (hence to one generated by xi) has the basis

{
xi

P ′x(x)
, 0 ≤ i ≤ n− 1} �

3) and 4) Now these become direct consequences of the definitions of the norm (resp. of
the different) �

What remains is divided in two parts.

First, we prove that the decomposition of a prime ideal of O to the product of prime
ideals in OK , the different and the discriminant may be calculated ”locally” in terms of
the finite extensions of complete fields of p-adic type.

Second, we study what happens to the prime ideal p ⊂ O in the finite extensionOK/O, O
being a complete d.v.r.

Theorem 3.30. Suppose K/k is a finite extension of the fields, || || : K → R≥0 an
absolute value such that its restriction to k makes k a complete metric space. Then the
topology of the metric space K coincides with the topology of the coordinate space kn.

11



In particular, the absolute value || ||, if exists, is defined by its restriction to k.

Remark. In the proof we suppose that k is locally compact and || ||k is nontrivial (thus
covering the arithmetic case). The statement of the Theorem is still true in the general
case, the proof being more technical.

Proof. Choose a basis {ei, 1 ≤ i ≤ n} of the k-vector space K. By definition, the

length of the vector in the coordinate space metric is given by the formula ||
∑
aiei|| 0

def
=

max
i

(||ai||). To prove the first statement it suffices to find two real constants c1, c2 > 0

such that ∀x ∈ K ||x|| ≤ c1||x|| 0 and ∀x ∈ K ||x|| 0 ≤ c2||x||. Clearly one may choose
c1 :=

∑
i

||ei||, then the first inequality holds by the triangle inequality for the absolute

value function || ||. In particular, the function ||x|| is continuous in the coordinate space

topology. Consider the set T1
def
= {x ∈ K such that ||x|| 0 = 1}. Then T1 is a closed subset

of the unit ball Bn
1 ⊂ kn where B1 is the unit ball in k. Since k is locally compact there

exists some ball in k which is compact. Moving the center to 0 and multiplying with some
big c ∈ k (which exists since || ||k is nontrivial) one gets a compact set containing B1.
Hence B1, B

n
1 and T1 are all compact. Therefore the continuous function || || achieves its

lower bound on T1, namely, ∃x1 ∈ T1 such that ||x1|| = inf
x∈T1
||x||. Since 0 6∈ T1, ||x1|| > 0.

Now choose c2 := (||x1||)−1, then the second inequality holds. To prove the second state-
ment suppose that || ||1 and || ||2 are two absolute value functions on K such that their
restrictions to k coincide. Then the coordinate space topology on kn is the same in both
cases, hence by the first statement of the Theorem || ||1 and || ||2 define the same topology
on K. By the Theorem 1.9 they are equivalent (|| ||1 = || ||t2). Since the restrictions to k
coincide by the assumption, the two absolute values are in fact the same �
Remark. The condition that (k, || ||) is a complete metric space is essential.

Recall the agreed notations and introduce some more. O is a Dedekind domain, k its
field of fractions, p ⊂ O some nonzero prime ideal, Op the corresponding local ring. Let

k̂p be the completion of the field k with respect to the absolute value || ||p (which is defined

by the function vp), Ôp being the topological closure of Op in k̂p. K/k is a finite separable
extension of degree n, OK the integral closure of O in K (”ring of integers”). By the
Theorem 3.27 OK is a Dedekind domain.

Consider the tensor product K ⊗k k̂p. By the Theorem 2.52 there exists a k̂p-algebra

isomorphism K ⊗k k̂p ' ⊕Ki where Ki/k̂p are finite separable extensions of degrees ni

12



such that
∑
ni = n. The collection of isomorphism classes of extensions Ki/k̂p is uniquely

defined. If one chooses a k-basis in K and a k̂p-basis in each Ki then both sides become

topological coordinate spaces over k̂p, the topology not depending on the choice and the
isomorphism above becoming a homeomorphism.

In what follows we identify both sides of the isomorphism above with an n-dimensional
k̂p-algebra Vp endowed with the topology of coordinate space and carrying both struc-
tures (those of the tensor product and of the direct sum). The field K will be identified
with its canonical image in Vp which is a subring (x 7→ x⊗1 in the standard construction
of the tensor product), πi will denote canonical projections Vp → Ki.

Theorem 3.31. 1) The three sets below are in the one-to-one correspondence:
1) Different prime ideals Pi ⊂ OK lying over p ⊂ O,
2) Different absolute value functions || || : K → R≥0 extending the p-adic absolute value,
3) Components Ki of the direct sum Vp = ⊕Ki.

Proof. 1) ↔ 2) By the theorems 3.27 and 3.16 pOK =
∏

Pei
i where {Pi} is the full

set of prime ideals in OK lying over p, ei are some positive integers. Suppose 0 6= a ∈ O.
Calculate vPi

(a). The ideal (a) ⊂ O may be represented in the form (a) =
∏

qj, qj
being some prime ideals in O. Then vPi

(a) = vPi
(aOK) = vPi

(
∏

(qjOK)). If qj 6= p then
it contains some nonzero element outside p thus qiOK contains a nonzero element outside
Pi which implies vPi

(qjOK) = 0. Therefore vPi
(a) = vPi

(pvp(a)OK) = eivp(a). Suppose
the p-adic absolute value on k is given by the formula ||a||p = s−vp(a), then the function

||b||Pi

def
= s−vPi

(b)/ei defines an absolute value on K extending || ||p. Clearly (OK)Pi
and

Pi(OK)Pi
are the corresponding valuation ring and valuation ideal.

Conversely, start with an absolute value function || || on K extending the p-adic one on
k. Its valuation ring R = {x ∈ K such that ||x|| ≤ 1} contains O and is integrally closed
hence OK ⊂ R. Let m ⊂ R be the maximal ideal. Then m ∩ OK contains pOK and
is prime, hence it coincides with some Pi. This implies ∀x ∈ OK�Pi ||x|| = 1 hence
(OK)Pi

⊂ R and m ∩ (OK)Pi
= Pi(OK)Pi

. Since (OK)Pi
is a d.v.r the ideal Pi(OK)Pi

is
principal. Let π ∈ (OK)Pi

be its generator, then ∀x ∈ (OK)Pi
||x|| = ||π||vPi

(x). Since
K is the field of fractions of the ring (OK)Pi

the same formula holds for all x ∈ K which
ends the proof �
2)↔ 3) By the first part of the proof at least one extension of the absolute value function

|| ||p from k̂p to Ki does exist, by the Theorem 3.30 it is unique. The map K
πi→ Ki is a

ring homomorphism hence an inclusion (K is a field). Now the absolute value on K may
be defined using the absolute value on Ki just constructed.

13



Conversely, start with an absolute value function || || on K extending the p-adic one on
k. Consider K as a subspace of the topological space Vp. By the triangle inequality the
function || || is continuous on K (cf. the first part of the proof of the previous theorem).

Since k is dense in k̂p, K = K ⊗k k is dense in Vp = K ⊗k k̂p. This implies that the

function || || may in a unique way be extended by continuity to the k̂p-algebra Vp pre-
serving the property ||xy|| = ||x||||y|| and enjoying the strict triangle inequality. Consider

the canonical inclusion k̂p ↪→ Vp (i.e. x 7→ 1 ⊗ x for the tensor product structure or
x 7→ (x, x, . . . , x) for the direct sum structure). By the assumption || || extends the p-adic

absolute value on k hence by continuity also that on k̂p. Let I0 = {x ∈ Vp such that
||x|| = 0}. By the triangle inequality I0 is an ideal, by the multiplicativity of the || || it is
prime and therefore by the hometask 21 maximal. Let Ii = ker(πi : Vp → Ki). Since Ki

is a field, Ii is maximal. Any nontrivial ideal J of the algebra ⊕Ki is contained in some
of the Ii (otherwise ∀i ∃yi ∈ J such that the i-th coordinate of yi is invertible, therefore∑
aiyi, ai having i-th coordinate 1 others 0, is an invertible element of J). Hence {Ii}

is the full list of maximal ideals of Vp. This implies that ∃i such that I0 = Ii. Then by
the triangle inequality ||x||, x ∈ Vp depends only on the residue of x mod Ii therefore
||x|| = ||πi(x)||0 where || ||0 is a function on Ki which defines an absolute value hence

coincides with the unique extension of the p-adic absolute value from k̂p to Ki �

Remark. We will use the notation πi both for the map πi : Vp → Ki and for its re-
striction to K.

Theorem 3.32. Choose an algebraic closure k̂p/k̂p and identify k with the subfield
of its elements algebraic over k. Then the natural map σ 7→ σ ◦ πi defines a one-to-one

correspondence
⋃

Σ
k̂p/k̂p

Ki/k̂p

∼→ Σ
k/k
K/k.

Proof. Consider both structures on Vp. Then there exists a triple correspondence⋃
Σ
k̂p/k̂p

Ki/k̂p
= Homk̂p−alg(⊕Ki, k̂p) = Homk̂p−alg(Vp, k̂p) = Homk̂p−alg(K ⊗k k̂p, k̂p) = Σ

k/k
K/k.

In fact, according to the proof of the previous theorem {Ii} is the full list of maximal
ideals of ⊕Ki whence the first canonical equality. By the universal property of the tensor

product Homk−alg(K⊗k k̂p, k̂p) = Homk−alg(K, k̂p)×Homk−alg(k̂p, k̂p). The subset of the

k̂p-linear homomorhisms in the left side corresponds to the subset of the elements in the
right side which have the identity map in the second factor. Since the image of K under

any inclusion to k̂p is contained in k, the first factor of the right side equals Σ
k/k
K/k which

establishes the last canonical equality �
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Theorem-Definition 3.33. Suppose K/k is normal. Let G = Gal (K/k). Then
1) G acts transitively on the set of ideals Pi | p. All the numbers ei in the product
pOK =

∏
Pei
i are the same.

2) The stationary subgroup of the ideal P under the action of G (i.e. GP
def
= {g ∈ G such

that gP = P}) is called the decomposition group of the ideal P. The subgroups GPi
are

conjugate.
3) Ki = πi(K)k̂p, the extensions Ki/k̂p are all isomorphic and Galois, Gal (Ki/k̂p) ' GPi

.

Proof. 1) Supppose that for some P1,P2 | p ∀g ∈ G g(P1) 6= P2. Choose an element
a ∈ P1 such that (a) +

∏
i 6=1

Pi = (1) (which is possible because ∀i P1 and Pi are maximal

and different thus coprime). Then ∀g ∈ G (g(a))+
∏

P 6=g(P1)

P = (1). Since g(P1) 6= P2 by

the assumption, this means that ∀g ∈ G g(a) 6∈ P2. But
∏
g∈G

g(a) = NK/k(a) ∈ k. Since

a ∈ P1, NK/k(a) ∈ P1∩k = p ⊂ P2, therefore ∃g such that g(a) ∈ P2, this contradiction
ending the proof of the first statement. The second one is clear since g(pOK) = pOK �
2) If g(P1) = P2 then gGP1g

−1 = GP2 , now use 1)�
3) K is dense in Vp hence Kk̂p ⊂ Vp is a dense k̂p-vector subspace. Therefore Kk̂p = Vp

thus ∀i πi(K)k̂p = Ki. Suppose g(P1) = P2. Then ∀a ∈ K vP2(g(a)) = vP1(a) hence
||g(a)||P2 = ||a||P1 (the two absolute values agree on k). The action of G on K extends

to Vp by the k̂p-linearity, therefore it is continuous. This implies the last formula remains
valid on Vp. From the construction in the Theorem 3.31 one knows that {x ∈ Vp such that
||x||Pi

= 0} = ker(πi), thus g(ker(π1)) = ker(π2) which implies K1 ' K2. By the Theorem

2.48 Ki/k̂p is Galois and Gal (Ki/k̂p) = Gal (πi(K)/πi(K) ∩ k̂p) = Gal (K/K ∩ {x ∈ Vp

such that πi(x) ∈ k̂p}). The last subfield consists of all the elements a ∈ K which are
the limits of Cauchy sequences {aj ∈ k} with respect to the absolute value || ||Pi

. Clearly

if g(Pi) = Pi then g(a) = a. Conversely, any element h ∈ Gal (Ki/k̂p) preserves the
absolute value (the latter being unique by the Theorem 3.30) hence h|πi(K) also preserves
the absolute value, therefore after transferring to K it still preserves the absolute value
|| ||Pi

. This implies h(Pi) = Pi �

Theorem 3.34. Extend the bilinear form TrK/k(ab) from K to Vp by k̂p-linearity. Use
notation 〈 , 〉 for the resulting form. Then 〈a, b〉 =

∑
TrKi/k̂p

(πi(a)πi(b)).

Proof. Theorem 3.32 immediately implies ∀x ∈ K TrK/k(x) =
∑
TrKi/k̂p

(πi(x)) whence

15



the statement of the Theorem for a, b ∈ π(K), the general case being a consequence of

the k̂p-linearity �

Theorem 3.35. Extend the definitions of the lattice, of the index and of the dual
lattice to Ôp-submodules of the k̂p-algebra Vp (for the definition of the dual lattice use

the bilinear form 〈 , 〉 just defined). Suppose M,N are O-lattices in K. Then MÔp, NÔp

are Ôp-lattices in Vp and

1) (M : N)OÔp = (MÔp : NÔp)Ôp
.

2) DO(N)Ôp = DÔp
(NÔp).

3) dO(N)Ôp = dÔp
(NÔp).

Proof. Since Op ⊂ Ôp one may suppose that M and N are free modules (just change

O to Op). If {xj} is a O-basis of M then {xj} is a Ôp-basis of MÔp, the same is true

for N . Since 〈 , 〉 is obtained from the trace bilinear form by the k̂p-linearity, also the
calculation of the dual basis leads to the same result in whichever space it is performed,
whence the Theorem �

Theorem 3.36. Suppose M,N are Ôp-lattices in Vp = ⊕Ki such that M = ⊕πi(M) and
the same property holds for N .Then
1) (M : N)Ôp

=
∏

(πi(M) : πi(N))Ôp
.

2) DÔp
(N) = ⊕DÔp

(πi(N)).

3) dÔp
(N) =

∏
dÔp

(πi(N)).

Proof. 1) Since Ôp is a principal ideal ring, M and N are free Ôp-modules. By the
assumption the transition matrix is a block matrix, hence its determinant equals the
product of the determinants of the blocks�
2) By the Theorem 3.34 the subspaces Ki are pairwise orthogonal, the restriction of the
〈 , 〉 to Ki coinciding with the TrKi/k̂p

(ab)-bilinear form �
3) Now use 1) for M = DÔp

(N) �

Remark. The statement of the Theorem is not true for general Ôp-lattices.

We are now going to study an important particular case where two theorems above are
applicapble.

Definition 3.37. Suppose I is an OK- f.i. in K. Then its norm NK/k(I)
def
= (OK : I)O.
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Definition-Theorem 3.38. Let Oi be the valuation ring in Ki (i.e. Oi
def
= {x ∈ Ki

such that ||x|| ≤ 1}, || || being the unique absolute value on Ki which extends the p-adic

absolute value on k̂p). Then

1) Oi is the integral closure of Ôp in Ki.

2) {the topological closure of OKOp in Vp} = OKÔp = ⊕Oi.

Proof. 1) By the Theorem 1.3 Oi is integrally closed therefore contains the integral

closure of the subring Ôp. Conversely, if x ∈ Ki lies outside Oi then ||x|| > 1 hence x

cannot be integral over Ôp by the strict triangle inequality �
2) Since any element of OKÔp is integral over Ôp, 1) implies OKÔp ⊂ ⊕Oi. Since OKÔp

is topologically closed in Vp, it now suffices to prove that OKOp is dense in ⊕Oi. We
already know (cf. the proof of the Theorem 3.31) that K is dense in Vp, hence ⊕Oi is
a topological closure of K ∩ ⊕Oi. Suppose x ∈ K is such that x ∈ ⊕Oi. This implies
∀Pi | p ||x||Pi

≤ 1 hence the decomposition of the f.i. (x) in primes contains only non-
negative powers of ideals Pi | p, thus x ∈ OKOp. Therefore K ∩ ⊕Oi ⊂ OKOp which
ends the proof �

Theorem 3.39. 1) Suppose I is an OK-f.i. in K. Then IÔp fits the assumption of
the Theorem 3.36.
2) NK/k(I)Ôp =

∏
NKi/k̂p

(πi(I)Oi).
3) NK/k : F(OK)→ F(O) is a group homomorphism .
4) πi(DK/k)Oi = DKi/k̂p

.

5) dK/kÔp =
∏

dKi/k̂p
.

6) NK/k(DK/k) = dK/k.

Proof. 1) As in the proof of Theorem 3.25 one may suppose O is a d.v.r, thus I is a
principal f.i. If I = OK the statement is covered by the previous theorem. Otherwise
I = aOK for some a ∈ K. The Ôp-lattice ⊕πi(IÔp) consists of the vectors x = {xi}
such that ∀i ||xi|| ≤ ||a||Pi

. Then a−1x has integer (i.e. lying in Oi) coordinates hence

a−1x ∈ OKÔp by the OK-case, thus x ∈ IÔp �
2) Use Theorems 3.25 and 3.26 for M = OK , N = I �
3) If I = aOK then NK/k(I) = NK/k(a)O by the definition, hence NK/k is a homomor-
phism on the subgroup of principal fractional ideals. For the general case use 2) (all the
fractional ideals in the right side are principal) �
4)-5) Use theorems 3.25 and 3.26 �
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6) NK/k(DK/k) = (OK : (DO(OK))−1)O = (by 3) above) (OK : DO(OK))−1
O = (DO(OK) :

OK)O = dK/k �

To finish the Algebraic Number Fields chapter we suggest a method of calculation the OK .

Suppose O = Z (we will omit the Z indices, K = K(x) where x is a root of the minimal
polynomial Px = T n + an−1T

n−1 + · · ·+ a0 with all ai ∈ Z. Suppose [K : Q] = n (i.e. x is
primitive). We know that δ(Z[x]) = ∆Px (Theorem 3.29) and δ(Z[x]) = ∆K(OK : Z[x])2

(Theorem 3.25(2)). Thus the index of OK over Z[x] is restricted from above by the square
root of the quadratic part of ∆Px .

For example, if Px = T 2 − d, d sqarefree, then ∆x = 4d, hence the index equals 1
(provided ∆K = 4d) or 2 (provided ∆K = d). Both cases do happen (see hometask).

Since the set of lattices Λ with bounded index (Λ : Z[x]) is finite and the bases could be
explicitly listed it is possible to choose the lattice with all elements of the basis integral
over Z of minimal discriminant. That lattice will be OK . The next theorem makes the
choice less wide.

Theorem 3.39. Suppose Px is Eisenstein with respect to a prime p. Then p - (OK : Z[x]).

Proof. Suppose the opposite is true. Then there exists y ∈ OK such that y /∈ Z[x]
and py ∈ Z[x]. Suppose py = b0 + b1x + · · · + bn−1x

n−1, all bi ∈ Z and let j be minimal

with the property p - bj. Let z = y − ( b0
p

+ · · · + bj−1x
j−1

p
) =

bj
p
xj + · · · + bn−1

p
xn−1 ∈ OK .

Multiply z with xn−j−1, then OK 3 zxn−j−1 =
bj
p
xn−1 + xn

p
(bj+1 +bj+2x+· · ·+bn−1x

n−j−2).

Since Px is Eisenstein p|xn hence
bj
p
xn−1 ∈ OK . Therefore NK/Q(

bj
p
xn−1) = ± bnj

pn
an−1

0 ∈ Z

which cannot happen as p - bj by assumption and p2 - a0 (Eisenstein)�

Example. Let Px = T 3− 2. Then ∆Px = −108. By the previous Theorem 2 - (OK : Z[x]).
Also Px−2 = T 3 + 6T 2 + 12T + 6 which is 3-Eisenstein, hence 3 - (OK : Z[x]) (obviously
x and x− 2 generate the same subring). This means that OK = Z[x].
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