Метрическая топология

Задачи.

Дедлайн для задач 36 - 40 (можно сдвинуть, предупредив): вторник, 28 декабря.

- **36**. Пусть $k = \mathbf{F}_q(T)$. Постройте явно фундаментальную область для действия k^+ на \mathbf{A}_k и сосчитайте её меру
- **37**. Проверьте, что отображение содержания $c: \mathbf{J}_k \to \mathbf{R}$ непрерывно.
- **38**. Пусть K/k сепарабельное расширение степени n. Формула $\mathbf{A}_K = K \otimes_k \mathbf{A}_k$ задает на \mathbf{A}_K структуру n мерной \mathbf{A}_k алгебры и определяет гомоморфизмы $i: \mathbf{A}_k \to \mathbf{A}_K; \ x \mapsto 1 \otimes x$ и $N_{K/k}: \mathbf{A}_K \to \mathbf{A}_k; \ y \mapsto \det y$. Как связаны содержания иделей c(x) и c(i(x))? c(y) и $c(N_{K/k}(y))$?
- **39**. Вычислите связную компоненту (в топологическом смысле) единичного элемента группы \mathbf{J}_k , если а) $k = \mathbf{Q}$; б) $k = \mathbf{Q}(\sqrt{d}), d < 0$; в)* $k = \mathbf{Q}(\sqrt{d}), d > 0$.
- **40**. Докажите, что любая открытая подгруппа конечного индекса в C_k содержит какую-нибудь конгруэнцподгруппу.

Упражнения.

Записывать и сдавать решения не нужно.

- 1. Докажите, что идельная топология строго сильнее топологии на иделях, как подмножестве аделей, и что \mathbf{J}_k не является открытым подмножеством \mathbf{A}_k .
- **2**. Проверьте непосредственно, что из компактности $\mathcal{B}/\lambda(U_S)$ (см. доказательство теоремы о единицах) следует максимальность ранга $\lambda(U_S)$.