НМУ, Алгебра-1 Листок 9. 31.10.2022

Задача 1.

Пусть M и N — нётеровы модули над кольцом R. Докажите, что $M\otimes_R N$ также нётеров.

Задача 2.

Пусть V — конечномерное векторное пространство над полем K и B — невырожденная билинейная форма на V. Пусть $A:V\to V$ — линейный оператор и из $v\perp w$ следует $Av\perp Aw$, A^* — сопряженный оператор относительно формы B. Докажите, что для некоторого $c\in K$ выполнено равенство $A^*A=c\cdot \mathrm{id}_V$.

Задача 3.

Пусть ℓ^2 — множество всех последовательностей вещественных чисел $x=(x_1,x_2,\ldots)$ таких, что ряд

$$\sum_{n} x_n^2$$

сходится.

- а) Покажите, что ℓ^2 векторное пространство относительно почленного сложения и умножения на число.
- б) Покажите, что сумма

$$\langle x, y \rangle = \sum_{n} x_n y_n$$

сходится и задаёт невырожденную билинейную форму на ℓ^2 .

Задача 4.

Пусть $q=p^n,\,p$ — простое число. Рассмотрим поле \mathbb{F}_q как векторное пространство над \mathbb{F}_p и поставим в соответствие каждому элементу $x\in\mathbb{F}_q$ линейный оператор умножения на x. Докажите, что билинейная форма $\mathrm{tr}:\mathbb{F}_q\to\mathbb{F}_p,\,(x,y)\mapsto\mathrm{Tr}(xy)$ невырождена.

Задача 5.

Зададим линейный функционал f на пространстве $\mathbb{R}[x]$ формулой $f(x^n)=\frac{1}{n+1}$. Докажите, что билинейная форма I(p(x),q(x))=f(p(x)q(x)) невырождена.

Задача 6*.

Сколько существует ортогональных матриц $(2n+1) \times (2n+1)$ над полем \mathbb{F}_7 ?