Листок 10 ГЕОМЕТРИЯ

Проективная геометрия-І

Чтобы сдать этот листок необходимо решить хотя бы 5 задач. Если в задаче есть несколько пунктов, то для того, чтобы её сдать нужно решить все пункты. Задачи со звёздочкой приравниваются к двум задачам без звёздочки.

- 1. Докажите, что двойное отношение четырех коллинеарных точек инвариантно при проективных преобразованиях.
- **2.** Четыре плоскости проходят через общую прямую l, а прямая m пересекает все четыре плоскости. Докажите, что двойное отношение точек пересечения прямой m с этими плоскостями не зависит от выбора m.
- **3.** Вычислите двойное отношение четырех точек $(x_i:y_i:0), i=1,2,3,4$, лежащих на бесконечно удаленной прямой Λ_{∞} .
- **4.** а) Сформулируйте и докажите теорему, двойственную к теореме Паппа. Сделайте соответствующий чертеж.
- b) Сформулируйте и докажите теорему, двойственную к теореме Дезарга. Сделайте соответствующий чертеж.
- 5^* . Докажите, что проективная двойственность переводит любую точку коники в прямую, касательную к двойственной конике.
- **6.** Используя предыдущую задачу, сформулируйте и докажите теорему, двойственную к теореме Паскаля (она известна как *теорема Брианшона*). Сделайте соответствующий чертеж. Задачу можно сдавать вне зависимости от того, сдали ли Вы предыдущую задачу.
- 7. В пространстве \mathbb{R}^3 даны три скрещивающиеся прямые l, l_1, l_2 . Каждой точке $A_1 \in l_1$ поставим в соответствие точку A_2 , в которой прямая l_2 пересекает плоскость, содержащую A_1 и l. Докажите, что соответствие $A_1 \mapsto A_2$ является проективным отображением прямой l_1 на l_2 .
- 8. На плоскости дан многоугольник $A_1 \dots A_n$. При движении точек A_1, \dots, A_{n-1} вдоль некоторых прямых l_1, \dots, l_{n-1} соответственно оказалось, что прямые, содержащие стороны многоугольника, проходят через неподвижные точки O_1, \dots, O_n , лежащие на одной прямой. Докажите, что точка A_n при этом также движется вдоль некоторой прямой.
- 9. Докажите неравенство треугольника для гиперболической метрики, используя подходящие проективные преобразования.
 - 10. Докажите евклидов вариант теоремы Паскаля для случая окружности.