НМУ, Дополнительные главы геометрии. Листок 4. Форма Тома, класс Тома и вокруг них. 8.11.2024.

Задача 1. Доказать, что определение послойного интеграла формы в вещественном ориентированном векторном расслоении корректно, то есть не зависит от выбора тривиализации и локальных координат.

Задача 2. Мы определили эйлерово векторное поле $\mathcal R$ на тотальном пространстве E векторного расслоения $E \longrightarrow M$ так: $\mathcal R(x,v) = v$, где $x \in M$, $v \in E_x \cong T_v E_x \subset T_{(x,v)} E$. Доказать, что это гладкое векторное поле на E.

Задача 3. Мы определили послойную гомотетию $h_t: E \longrightarrow E$ с коэффициентом растяжения $t \geqslant 0$ на тотальном пространстве E векторного расслоения $E \longrightarrow E$ так: $h_t(x,v) = (x,tv)$, где $x \in M, v \in E_x$. Доказать, что это гладкое отображение E в себя.

Задача 4. Мы определяли отображение $H:\Omega^l(E)\longrightarrow \Omega^{l-1}(E)$ формулой

$$H\beta = \int_0^1 \frac{1}{t} h_t^* \iota_{\mathcal{R}} \beta \, dt.$$

Доказать, что этот интеграл сходится.

Задача 5. Мы определяли интеграл Березина (березиниан) T с помощью выбранного положительно ориентированного ортонормированного базиса. Доказать, что на самом деле интеграл Березина зависит только от ориентации и евклидового скалярного произведения, но не от выбора базиса.

Задача 6. Рассмотрим кососимметрический оператор A в евклидовом пространстве V. Выберем ортонормированный базис e_1,\dots,e_k . Сопоставим оператору A кососимметрический бивектор $\sum\limits_{i< j} (Ae_i,e_j)e_i \wedge e_j \in \Lambda^2 V$. Доказать, что

это соответствие взаимно однозначное и не зависит от выбора базиса.

Задача 7. Пусть $E \longrightarrow M$ вещественное векторное расслоение с евклидовой структурой. Тогда в каждом слое расслоения $\operatorname{End} E$ можно выбрать подпространство из кососимметрических относительно данной евклидовой структуры операторов. Доказать, что эти подпространства являются слоями подрасслоения, которое мы будем обозначать $\mathfrak{so}(E) \subset \operatorname{End} E$.

Задача 8. Рассмотрим кривизну $F \in \Omega^2(M, \operatorname{End} E)$ связности ∇ в вещественном расслоении $E \longrightarrow M$. Как известно, если в расслоении есть евклидова структура, а связность согласована с ней, то кривизна кососимметрична, то есть $F \in \Omega^2(M,\mathfrak{so}(E))$. Тогда по задаче 6 ей сопоставляется 2-форма со значениями в сечениях расслоения $\Lambda^2 E$, будем её сейчас обозначать $\tilde{F} \in \Omega^2(M, \Lambda^2 E)$. По известному тождеству Якоби, $\nabla F = 0$, где мы имеем в виду продолжение связности с E на расслоение E на расслоение

Задача 9. Пусть $E \longrightarrow M$ вещественное векторное расслоение. Напомним обозначение из лекции $\Omega^{i,j} = \Omega^i(E,\Lambda^j p^*E)$. В лекции мы рассматривали тавтологическое сечение $\mathbf x$ расслоения $p^*E \longrightarrow E$, определённое как $\mathbf x(x,v) = (x,v,v)$, где $x \in M, v \in E_x, (x,v) \in E, ((x,v),v) \in (p^*E)_{(x,v)} = E_x$. Мы рассматривали $\mathbf x$ как элемент $\Omega^{0,1} = \Omega^0(E,p^*E) = \Gamma(E,p^*E)$. Ковариантная производная продолжается, как известно, с сечений на формы со значениями в сечениях, то есть $\nabla: \Omega^{i,j} \longrightarrow \Omega^{i+1,j}$. Доказать, что $\nabla \nabla \mathbf x = a(\mathbf x) \tilde F \in \Omega^{2,1}$, где $a(\mathbf x)$ описанная в лекции операция контракции с $\mathbf x$, а $\tilde F$ определена в задаче 8.

Задача 10. Многообразие не является векторным пространством, но всё же на римановом многообразии в окрестности точки можно ввести эйлерово векторное поле следующим образом. Рассмотрим нормальную окрестность точки p и выберем геодезические координаты x^1,\dots,x^n в ней. Определим эйлерово поле как $\mathcal{R}=\sum\limits_{i=1}^n x^i \frac{\partial}{\partial x^i}$. Зависит ли \mathcal{R} от выбора геодезических координат? Доказать, что $\nabla_{\mathcal{R}}\mathcal{R}=\mathcal{R}$.