ЛИСТОК 6

- 1. Отобразите единичный круг биголоморфно на следующие области:
 - а) верхнюю полуплоскость $\{z \in \mathbb{C} \mid \operatorname{Im} z > 0\}$
 - b) плоскость с разрезом $\mathbb{C} \setminus [0, +\infty)$
 - c) первый квадрант $\{z \in \mathbb{C} \mid \operatorname{Re} z > 0, \operatorname{Im} z > 0\}$
 - d) полосу $\{z \in \mathbb{C} \mid 0 < \operatorname{Im} z < 1\}$
- **2.** Пусть $\kappa(z) = \frac{-z}{(1-z)^2}$ (функция Кёбе).
 - а) Докажите, что κ однолистно отображает единичный круг на $\mathbb{C}\setminus[\,\frac{1}{4},+\infty).$
 - b) Найдите разложение κ в ряд Тейлора в точке нуль.
- **3.** Пусть $f \in \mathcal{O}(\Delta)$ однолистная функция в единичном круге. Докажите, что

$$\pi |f'(0)|^2 \le \operatorname{Area}(f(\Delta)),$$

причем равенство достигается тогда и только тогда, когда f линейна.

- 4. Пусть f автоморфизм единичного круга Δ . Докажите, что
 - а) если f(0)=0, то $f(z)=e^{i\theta}z$ для некоторого $\theta\in\mathbb{R};$
 - b) в общем случае $f(z) = e^{i\theta} \frac{z-a}{1-\overline{a}z}$ для некоторых $a \in \Delta$ и $\theta \in \mathbb{R}$.
- 5. Докажите, что всякий автоморфизм верхней полуплоскости имеет вид

$$z \longmapsto \frac{\alpha z + \beta}{\gamma z + \delta},$$

где $\alpha, \beta, \gamma, \delta \in \mathbb{R}$ и $\alpha\delta - \gamma\beta = 1$.

6. Докажите, что всякий автоморфизм С является аффинным преобразованием

$$z \longmapsto az + b$$
, где $a, b \in \mathbb{C}, a \neq 0$.

7. Найдите все автоморфизмы $\mathbb{C}^* = \mathbb{C} \setminus \{0\}.$