## Exercises to Lecture III

- **III.1.** Prove that  $D^n/\partial D^n \approx S^n$ .
- **III.2.** Prove that the space  $S^1 \times S^1$  is homeomorphic to the space obtained by the following identification of points of the square  $0 \le x, y \le 1$  belonging to its sides:  $(x,0) \sim (x,1)$  and  $(0,y) \sim (1,y)$ . (This space is called the *torus*.)
- III.3. Let I = [0,1]. Prove that the space  $S^1 \times I$  is not homeomorphic to the Möbius band.
- **III.4.** Prove that the following spaces are homeomorphic:
- (a) the set of lines in  $\mathbb{R}^{n+1}$  passing through the origin;
- (b) the set of hyperplanes in  $\mathbb{R}^{n+1}$  passing through the origin;
- (c) the sphere  $S^n$  with identified diametrically opposite points (every pair of diametrically opposite points is identified);
- (d) the disc  $D^n$  with identified diametrically opposite points of the boundary sphere  $S^{n-1} = \partial D^n$ .
- III.5. Prove that the following spaces are homeomorphic:
- (a) the set of complex lines in  $\mathbb{C}^{n+1}$  passing through the origin;
- (b) the sphere  $S^{2n+1} \subset \mathbb{C}^{n+1}$  with identified points of the form  $\lambda x$  for every  $\lambda \in \mathbb{C}$ ,  $|\lambda| = 1$  (for any fixed point  $x \in S^{2n+1}$ );
- (c) the disc  $D^{2n} \subset \mathbb{C}^n$  with identified points of the boundary sphere  $S^{2n-1} = \partial D^{2n}$  of the form  $\lambda x$  for every  $\lambda \in \mathbb{C}$ ,  $|\lambda| = 1$  (for any fixed point  $x \in S^{2n-1}$ ).
- **III.6.** Prove that  $CD^n \approx D^{n+1}$  and  $\Sigma D^n \approx D^{n+1}$ .
- III.7. Prove that  $\mathbb{R}P^1 \approx S^1$  and  $\mathbb{C}P^1 \approx S^2$ .
- **III.8.** Prove that  $CS^n \approx D^{n+1}$  and  $\Sigma S^n \approx S^{n+1}$ .
- **III.9.** Is it true (for arbitrary CW-complex) that (a)  $X*Y \approx Y*X$ ; (b)  $(X*Y)*Z \approx X*(Y*Z)$ ; (c)  $C(X*Y) \approx CX*Y$ ; (d)  $\Sigma(X*Y) \approx \Sigma X*Y$ ?
- **III.10.** Prove that  $S^n * S^m \approx S^{n+m+1}$ .
- **III.11.** Prove that  $\mathbb{R}^n \setminus \mathbb{R}^k \approx S^{n-k-1} \times \mathbb{R}^{k+1}$ .
- **III.12.** Prove that  $S^{n+m-1} \setminus S^{n-1} \approx \mathbb{R}^n \times S^{m-1}$ . (We suppose that the disposition of  $S^{n-1}$  in  $S^{n+m-1}$  is standard.)
- III.13. Let  $S^p \vee S^q = (S^p \times \{*\}) \cup (\{*\} \times S^q) \subset S^p \times S^q$ . Prove that  $(S^p \times S^q)/(S^p \vee S^q) \approx S^{p+q}$ .
- **III.14.** Prove that the sphere  $S^2$  is a CW-complex.
- **III.15.** Prove that the torus  $T^2$  is a CW-complex.

- **III.16.** Prove that the sphere  $S^n$  is a CW-complex.
- **III.17.** Prove that the real projective space  $\mathbb{R}P^n$  is a CW-complex.
- **III.18.** Prove that the complex projective space  $\mathbb{C}P^n$  is a CW-complex.
- III.19. (a) Find an example of a complex that satisfies the W-axiom, and does not satisfy the C-axiom.
- (b) Suppose some complex satisfies the C-axiom, is it true that it satisfies the W-axiom?
- III.20. Prove that the configuration spaces of the hinge mechanisms described in Exercises II.15—II.18 are all CW-complexes.