Exercises to Lecture IV

- IV.1.
- (a) Attaching a handle is the same as attaching a horseshoe-shaped cylinder (b) Attaching a Klein bottle is the same as attaching a "twisted" cylinder
- IV.2.The projective plane is
- (a) the Möbius strip with a disk attached;
- (b) the sphere S^2 with antipodal points identified
- (c) the disk D^2 with diametrically opposed points identified
- IV.3.The Klein bottle is
- (a) the double of the Möbius strip;
- (b) the sphere with two holes with two Möbius strips attached
- (c) the connected sum of two projective planes
- IV.4. this space is homeomorphic to the Möbius band without boundary. (a) Consider the topological space of straight lines in the plane. Prove that
- Prove that this space is homeomorphic to the cylinder without boundary. (b) Consider the topological space of oriented straight lines in the plane.
- IV.5. Show that a punctured tube from a bicycle tire can be turned inside out. is made were elastic enough.) (More precisely, this would be possible if the rubber from which the tube
- IV.6 (Polygonal Schoenflies Theorem). A closed polygonal line in the plane bounds a domain whose closure is the disk D^2 .
- IV.7 (Polygonal Annulus Theorem). Two closed polygonal lines in the plane, nulus $S^1 \times [0,1]$. one of which encloses the other, bound a domain whose closure is the an-
- IV.8. surface by removing two different open 2-simplices from it are homeomor-(a) The two surfaces-with-holes obtained from the same closed triangulated
- (b) Show that the connected sum of surfaces is well defined
- IV.9. Prove that $T^2 \# \mathbb{R}P^2 \approx 3\mathbb{R}P^2$
- IV.10. (a) Prove that Kl # Kl is homeomorphic to the Klein bottle with one handle attached.
- handle attached. (b) Prove that $\mathbb{R}P^2 \# Kl$ is homeomorphic to the projective plane with one
- IV.11. Prove that if a surface M_1 is nonorientable, then for any surface M_2 the surface $M_1 \# M_2$ is nonorientable.
- IV.12. How many different surfaces is it possible to glue (by identifying sides)
- starting with (a) square; (b) hexagon; (c) octagon.

- IV.13. (a) Prove that $\chi(M_1 \# M_2) = \chi(M_1) + \chi(M_2) - 2$.
- (b) Prove that $\chi(mT^2) = 2 2m$ and $\chi(n\mathbb{R}P^2) = 2 n$.
- IV.14 Prove that a closed orientable surface is not homeomorphic to a closed nonorientable surface
- IV.15. Prove that the Euler characteristics of two homeomorphic closed surfaces are equal.
- IV.16. Prove that a simplicial neighborhood of a tree is homeomorphic to the disc
- IV.17. Find $\chi(Kl)$
- IV.18. Let M_1 and M_2 be two homeomorphic surfaces, prove that $\chi(M_1) = \chi(M_2)$.
- Determine the type of the surface shown in Fig. IV.1 (a) for n = 3; (b) for arbitrary $n \geq 2$.

Fig. IV.1: Determine the type of this surface

IV.20.(a)* Prove that any closed nonorientable surface is homeomorphic to one of the surfaces in the following list:

 $\mathbb{R}P^2 \# \mathbb{R}P^2 \# \dots \# \mathbb{R}P^2,$ $\mathbb{R}P^2 \# \mathbb{R}P^2$ $\mathbb{R}P^2$ (Klein bottle), (projective plane);

- (b) Any two distinct surfaces in the list are not homeomorphic.
- IV.21. Consider the quotient space $(S^1 \times S^1)/(x,y) \sim (y,x)$. This space is a surface. Which one?
- IV.22.Prove that the boundary of $\mathrm{Mb}^2 \times I$ is the Klein bottle
- IV.23.Prove that on the sphere with g handles, the maximal number of nonintersecting closed curves not dividing this surface is equal to g.