Exercises to Lecture V

- **V.1.** (a) Suppose that $X = X_1 \cup ... \cup X_n$, where the sets $X_1, ..., X_n$ are closed. Consider a map (not necessarily continuous) $f: X \to Y$ and its restrictions $f_i = f|_{X_i}$. Prove that the map f is continuous iff every map f_i is continuous. (b) Prove the same assertion for open sets $X_1, ..., X_n$.
- V.2. (a) Prove that if the image of a map f: X → S¹ is not the whole space S¹ (i.e., the map is not onto), then f is homotopic to a constant map.
 (b) Prove that if a map f: X → S¹ is not onto, then f is homotopic to a constant map.
- **V.3.** Prove that the spaces $S^1 \vee I$ and S^1 are homotopy equivalent.
- **V.4.** Prove that the following spaces are homotopy equivalent: (a) the sphere S^2 with two points identified; (b) the union of the sphere S^2 and one of its diameters; (c) $S^1 \vee S^2$.
- **V.5.** Prove that the sphere with g handles from which a point has been removed is homotopic to the wedge product of n copies of the circle and find n.
- **V.6.** Prove that the spaces $\mathbb{R}^3 \setminus S^1$ and $S^2 \vee S^1$ are homotopy equivalent.
- **V.7.** Let X be the space \mathbb{R}^3 from which n copies of S^1 are deleted (all circles S^1 are unknotted and pairwise nonlinked). Prove that X is homotopy equivalent to the wedge product of n copies of the space $S^2 \vee S^1$.
- **V.8.** Let L be a two circles in \mathbb{R}^3 linked in the simplest way. Prove that the spaces $\mathbb{R}^3 \setminus L$ and $S^2 \vee T^2$ are homotopy equivalent.
- **V.9.** Prove that the following assertions are equivalent:
 - (a) Any continuous map $f: D^n \to D^n$ has a fixed point.
 - (b) There is no retraction $r: D^n \to S^{n-1}$.
 - (c) Let v(x) be a continuous vector field on D^n such that v(x) = x for any point $x \in S^{n-1}$. Then v(x) = 0 for some point $x \in D^n$.
- **V.10.** Prove that A is a retract of X if and only if any continuous map $f: A \to Y$ can be extended to X.
- **V.11.** Prove that if any continuous map $X \to X$ has a fixed point and A is a retract of X, then any continuous map $A \to A$ also has a fixed point.
- **V.12.** Let S^{∞} be the set of points $(x_1, x_2, \ldots) \in \mathbb{R}^{\infty}$ such that only finite number of coordinates are nonzero and $\sum x_i^2 = 1$. It is a metric space, so it has a natural topology. Prove that the space S^{∞} is contractible. [Hint: prove that the identity map is homotopic to the map $(x_1, x_2, \ldots) \mapsto (0, x_1, x_2, \ldots)$.]