Exercises to Lecture VIII

- **VIII.1.** Suppose that one surface is covered by another surface. What is the relation between their Euler characteristics, if the covering is *n*-fold?
- **VIII.2.** Prove that the sphere with g_1 handles can be covered by the sphere with g_2 handles $(g_1, g_2 \ge 2)$ iff $g_1 1$ is a divisor of $g_2 1$.
- VIII.3. Construct a nonregular covering of the wedge product of two circles.
- VIII.4. Construct two regular coverings of the wedge product of two circles that are not homotopy equivalent to each other.
- **VIII.5.** Prove that for any $n \geq 2$ the wedge product of two circles can be covered by the wedge product of n circles.
- **VIII.6.** Prove that if the base surface of a covering $p: N^2 \to M^2$ is orientable, then so is the covering surface N^2 .
- **VIII.7.** Let the covering surface N^2 of a covering $p: N^2 \to M^2$ is orientable. Is it true that the base surface M^2 is orientable?
- **VIII.8.** Can $\mathbb{R}P^2$ cover the sphere?
- **VIII.9.** Can the torus T^2 cover T^2 by a 3-fold covering?
- **VIII.10.**Can $\mathbb{R}P^2$ be covered by the plane?