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Abstract In this paper we present a new approach for constructing subgradient
schemes for different types of nonsmooth problems with convex structure. Our methods
are primal-dual since they are always able to generate a feasible approximation to the
optimum of an appropriately formulated dual problem. Besides other advantages, this
useful feature provides the methods with a reliable stopping criterion. The proposed
schemes differ from the classical approaches (divergent series methods, mirror descent
methods) by presence of two control sequences. The first sequence is responsible for
aggregating the support functions in the dual space, and the second one establishes a
dynamically updated scale between the primal and dual spaces. This additional flexi-
bility allows to guarantee a boundedness of the sequence of primal test points even in
the case of unbounded feasible set (however, we always assume the uniform bounded-
ness of subgradients). We present the variants of subgradient schemes for nonsmooth
convex minimization, minimax problems, saddle point problems, variational inequali-
ties, and stochastic optimization. In all situations our methods are proved to be optimal
from the view point of worst-case black-box lower complexity bounds.
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1 Introduction

1.1 Prehistory

The results presented in this paper are not very new. Most of them were obtained by
the author in 2001–2002. However, a further purification of the developed framework
led to rather surprising results related to the smoothing technique. Namely, in [11] it
was shown that many nonsmooth convex minimization problems with an appropriate
explicit structure can be solved up to absolute accuracy ε in O( 1

ε
) iterations of special

gradient-type methods. Recall that the exact lower complexity bound for any black-
box subgradient scheme was established on the level of O( 1

ε2 ) iterations (see [9], or
[10], Sect. 3.1, for a more recent exposition). Thus, in [11] it was shown that the
gradient-type methods of Structural Optimization outperform the black-box ones by
an order of magnitude.1

At that moment of time, the author got an illusion that the importance of black-box
approach in Convex Optimization will be irreversibly vanishing, and, finally, this ap-
proach will be completely replaced by other ones based on a clever use of problem’s
structure (interior-point methods, smoothing, etc.). This explains why the results in-
cluded in this paper were not published at time. However, the developments of the last
years clearly demonstrated that in some situations the black-box methods are irrepla-
ceable. Indeed, the structure of a convex problem may be too complex for constructing
a good self-concordant barrier or for applying a smoothing technique. Note also, that
optimization schemes sometimes are employed for modelling certain adjustment pro-
cesses in real-life systems. In this situation, we are not free in selecting the type
of optimization scheme and in the choice of its parameters. However, the results on
convergence and the rate of convergence of corresponding methods remain interesting.

These considerations encouraged the author to publish the above mentioned results
on primal-dual subgradient methods for nonsmooth convex problems. Note that some
elements of developed technique were used by the author later on in different papers
related to smoothing approach (see [11–13]). Hence, by a proper referencing we have
tried to shorten this paper.

1.2 Motivation

Historically, a subgradient method with constant step was the first numerical scheme
suggested for approaching a solution to optimization problem

1 This unexpected observation resulted also in a series of papers of different authors related to improved
methods for variational inequalities [1,8,13].
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min
x

{ f (x) : x ∈ Rn} (1.1)

with nonsmooth convex objective function f (see [17] for historical remarks). In a
convergent variant of this method [6,16] we need to choose in advance a sequence of
steps {λk}∞k=0 satisfying the divergent-series rule:

λk > 0, λk → 0,
∞∑

k=0

λk = ∞. (1.2)

Then, for k ≥ 0 we can iterate:

xk+1 = xk − λk gk, k ≥ 0, (1.3)

with some gk ∈ ∂ f (xk). In another variant of this scheme, the step direction is nor-
malized:

xk+1 = xk − λk gk/‖gk‖2, k ≥ 0, (1.4)

where ‖ · ‖2 denotes the standard Euclidean norm in Rn , introduced by the inner
product

〈x, y〉 =
n∑

j=1

x ( j)y( j), x, y ∈ Rn .

Since the objective function f is nonsmooth, we cannot expect its subgradients
be vanishing in a neighborhood of optimal solution to (1.1). Hence, the condition
λk → 0 is necessary for convergence of the processes (1.3) or (1.4). On the other
hand, assuming that ‖gk‖2 ≤ L , for any x ∈ Rn we get

‖x − xk+1‖2
2

(1.3)= ‖x − xk‖2
2 + 2λk〈gk, x − xk〉 + λ2

k‖gk‖2
2

≤ ‖x − xk‖2
2 + 2λk〈gk, x − xk〉 + λ2

k L2.

Hence, for any x ∈ Rn with 1
2‖x − x0‖2

2 ≤ D

f (x) ≥ lk(x)
def=

k∑
i=0

λi [ f (xi )+ 〈gi , x − xi 〉]/
k∑

i=0
λi

≥
{

k∑
i=0

λi f (xi )− D − 1
2 L2

k∑
i=0

λ2
i

}
/

k∑
i=0

λi .

(1.5)
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Thus, denoting f ∗
D = min

x
{ f (x) : 1

2‖x − x0‖2
2 ≤ D},

f̄k =
k∑

i=0
λi f (xi )

k∑
i=0

λi

, ωk =
2D+L2

k∑
i=0

λ2
i

2
k∑

i=0
λi

,

we conclude that f̄k − f ∗
D ≤ ωk . Note that the conditions (1.2) are necessary and

sufficient for ωk → 0.
In the above analysis, convergence of the process (1.3) is based on the fact that the

derivative of lk(x), the lower linear model of the objective function, is vanishing. This
model is very important since it provides us also with a reliable stopping criterion.
However, examining the structure of linear function lk(·), we can observe a very strange
feature:

New subgradients enter the model wi th decreasing weights. (1.6)

This feature contradicts common sense. It contradicts also to general principles of ite-
rative schemes, in accordance to which the new information is more important than the
old one. Thus, something is wrong. Unfortunately, in our situation a simple treatment
is hardly possible: we have seen that decreasing weights (≡ steps) are necessary for
convergence of the primal sequence {xk}∞k=0.

The above contradiction served as a point of departure for the developments pre-
sented in this paper. The proposed alternative looks quite natural. Indeed, we have
seen that in primal space it is necessary to have a vanishing sequence of steps, but in
the dual space (the space of linear functions), we would like to apply non-decreasing
weights. Consequently, we need two different sequences of parameters, each of which
is responsible for some processes in primal and dual spaces. The idea to relate the pri-
mal minimization sequence with a master process existing in the dual space is not new.
It was implemented first in the mirror descent methods (see [4,5,9] for newer versions
and historical remarks). However, the divergent series somehow penetrated in this
approach too. Therefore, in Euclidean situation the mirror descent method coincides
with subgradient one and, consequently, shares the drawback (1.6). In our approach,
we managed to improve the situation. Of course, it was impossible to improve the
dependence of complexity estimates in ε. However, the improvement in the constant
is significant: the best step-size strategy in [4,5] gives the same (infinite) constant in
the estimate of the rate of convergence as the worst strategy for the new schemes (see
Sect. 8 for discussion).

In this paper we consider the primal-dual subgradient schemes. It seems that this
intrinsic feature of all subgradient methods was not recognized yet explicitly. Consider,
for example, the scheme (1.3). From inequality (1.5), it is clear that

f ∗
D ≥ f̂k(D)

def= min
x

{
lk(x) : 1

2‖x − x0‖2
2 ≤ D

}
.
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Note that the value f̂k(D) can be easily computed. On the other hand, in Convex
Optimization there is only one way to get a lower bound for the optimal solution of a
minimization problem. For that, we need to find a feasible solution to a certain dual
problem.2 Thus, computability of f̂k(D) implies that we are able to point out a dual
solution. And convergence of the primal-dual gap f̄k(D) − f̂k to zero implies that
the dual solution approaches the optimal one. Below, we will discuss in details the
meaning of the dual solutions generated by the proposed schemes.

Finally, note that the subgradient schemes proposed in this paper are different from
the standard “search methods”.3 For example, for problem (1.1) we suggest to use the
following process:

xk+1 = arg min
x∈Rn

{
1

k + 1

k∑

i=0

[ f (xi )+ 〈gi , x − xi 〉] + µk‖x − x0‖2
2

}
, (1.7)

where µk = O( 1√
k
) → 0. Note that in this scheme no artificial elements are needed

to ensure the boundedness of the sequence of test points.

1.3 Contents

The paper is organized as follows. In Sect. 2 we consider a general scheme of dual
averaging (DA) and prove the upper bounds for corresponding gap functions. These
bounds will be specified later on for the particular problem classes. We give also two
main variants of DA-methods, the method of simple dual averages (SDA) and the
method of weighted dual averages.

In Sect. 3 we apply DA-methods to minimization over simple sets. In Sect. 3.1 we
consider different forms of DA-methods as applied to a general minimization problem.
The main goal of Sect. 3 is to show that all DA-methods are primal-dual. For that, we
always consider a kind of dual problem and point out the sequence which converges to
its solution. In Sect. 3.2 this is done for general unconstrained minimization problem.
In Sect. 3.3 we do that for minimax problems. It is interesting that approximations of
dual multipliers in this case are proportional to the number of times the corresponding
functional components were active during the minimization process (compare with
[3]). Finally, in Sect. 3.4 we consider primal-dual schemes for solving minimization
problems with simple functional constraints. We manage to obtain for such problems
an approximate primal-dual solution despite to the fact that usually even a complexity
of computation of the value of dual objective function is comparable with complexity
of the initial problem.

In the next Sect. 4 we apply SDA-method to saddle point problems, and in Sect. 5
it is applied to variational inequalities. It is important that for solvable problems SDA-
method generates a bounded sequence even for unbounded feasible set. In Sect. 6 we

2 Depending on available information on the structure of the problem, this dual problem can be posed in
different forms. Therefore, sometimes we prefer to call such problems the adjoint ones.
3 We mean the methods described in terms of the steps in primal space. The alternative is the mirror descent
approach [9], in accordance to which the main process is arranged in the dual space.
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226 Y. Nesterov

consider a stochastic version of SDA-method. The output of this method can be seen as
a random point (the repeated runs of the algorithm give different results). However, we
prove that the expected value of the objective function at the output points converges
to the optimal value of stochastic optimization problem with certain rate.

Finally, in Sect. 7 we consider two applications of DA-methods to modelling.
In Sect. 7.1 it is shown that a natural adjustment strategy (which we call balanced
development) can be seen as an implementation of DA-method. Hence, it is possible
to prove that in the limit this process converges to a solution of some optimization pro-
blem. In Sect. 7.2, for a multi-period optimization problem we compare the efficiency
of static strategies based on preliminary planning and a certain dynamic adjustment
process (based on SDA-method). It is clear that the dynamic adjustment computatio-
nally is much cheaper. On the other hand, we show that its results are comparable with
the results of preliminary planning based on complete knowledge of the future.

We conclude the paper with a short discussion of results in Sect. 8. In Appendix
we put the proof of the only result on strongly convex functions, for which we did not
find an appropriate reference in the comprehensive monographs [7,15].

1.4 Notations and generalities

Let E be a finite-dimensional real vector space and E∗ be its dual. We denote the value
of linear function s ∈ E∗ at x ∈ E by 〈s, x〉. For measuring distances in E , let us fix
some (primal) norm ‖ · ‖. This norm defines a system of primal balls:

Br (x) = {y ∈ E : ‖y − x‖ ≤ r}.

The dual norm ‖ · ‖∗ on E∗ is introduced, as usual, by

‖s‖∗ = max
x

{〈s, x〉 : x ∈ B1(0)}, s ∈ E∗.

Let Q be a closed convex set in E . Assume that we know a prox-function d(x) of
the set Q. This means that d(x) is a continuous function with domain belonging to Q,
which is strongly convex on Q with respect to ‖ · ‖: ∀x, y ∈ Q, ∀α ∈ [0, 1],

d(αx + (1 − α)y) ≤ αd(x)+ (1 − α)d(y)− 1
2σα(1 − α)‖x − y‖2, (1.8)

where σ ≥ 0 is the convexity parameter. Denote by x0 the prox-center of the set Q:

x0 = arg min
x

{d(x) : x ∈ Q}. (1.9)

Without loss of generality, we assume that d(x0) = 0. In view of Lemma 6 in Appendix,
the prox-center is well-defined and

d(x) ≥ 1
2σ‖x − x0‖2, x ∈ Q.
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Primal-dual subgradient methods 227

An important example is the standard Euclidean norm:

‖x‖ = ‖x‖2 ≡ 〈x, x〉1/2, d(x) = 1
2‖x − x0‖2

2, σ = 1,

with some x0 ∈ Q. For another example, consider l1-norm:

‖x‖ = ‖x‖1 ≡
n∑

i=1

|x (i)|. (1.10)

Define Q = �n
def= {x ∈ Rn+ :

n∑
i=1

x (i) = 1}. Then the entropy function:

d(x) = ln n +
n∑

i=1

x (i) ln x (i).

is strongly convex on Q with σ = 1 and x0 = ( 1
n , . . .

1
n )

T (see [11, Lemma 3]).

2 Main algorithmic schemes

Let Q be a closed convex set in E endowed with a prox-function d(x). We allow
Q to be unbounded (for example, Q ≡ E). For our analysis we need to define two
support-type functions of the set Q:

ξD(s) = max
x∈Q

{〈s, x − x0〉 : d(x) ≤ D},
Vβ(s) = max

x∈Q
{〈s, x − x0〉 − βd(x)}, (2.1)

where D ≥ 0 and β > 0 are some parameters. The first function is a usual support
function for the set

F D = {x ∈ Q : d(x) ≤ D}.

The second one is a proximal-type approximation of the support function of set Q.
Since d(·) is strongly convex, for any positive D and β we have dom ξD = dom Vβ =
E∗. Note that both of the functions are nonnegative.

Let us mention some properties of function V (·). If β2 ≥ β1 > 0, then for any
s ∈ E∗ we have

Vβ2(s) ≤ Vβ1(s). (2.2)

Note that the level of smoothness of function Vβ(·) is controlled by parameter β.

Lemma 1 Function Vβ(·) is convex and differentiable on E∗. Moreover, its gradient
is Lipschitz continuous with constant 1

βσ
:
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228 Y. Nesterov

‖∇Vβ(s1)− ∇Vβ(s2)‖ ≤ 1

βσ
‖s1 − s2‖∗, ∀s1, s2 ∈ E∗. (2.3)

For any s ∈ E∗, vector ∇Vβ(s) belongs to Q:

∇Vβ(s) = πβ(s)− x0, πβ(s)
def= arg min

x∈Q
{−〈s, x〉 + βd(x)}. (2.4)

(This is a particular case of Theorem 1 in [11].)
As a trivial corollary of (2.3) we get the following inequality:

Vβ(s + δ) ≤ Vβ(s)+ 〈δ,∇Vβ(s)〉 + 1

2σβ
‖δ‖2∗ ∀s, δ ∈ E∗. (2.5)

Note that in view of definition (1.9) we have πβ(0) = x0. This implies Vβ(0) = 0 and
∇Vβ(0) = 0. Thus, in this case inequality (2.5) with s = 0 yields

Vβ(δ) ≤ 1

2σβ
‖δ‖2∗ ∀δ ∈ E∗. (2.6)

In the sequel, we assume that the set Q is simple enough for computing vector
πβ(s) exactly. For our analysis we need the following relation between the functions
(2.1).

Lemma 2 For any s ∈ E∗ and β ≥ 0 we have

ξD(s) ≤ βD + Vβ(s). (2.7)

Proof Indeed,

ξD(s) = max
x∈Q

{〈s, x − x0〉 : d(x) ≤ D}
= max

x∈Q
min
β≥0

{ 〈s, x − x0〉 + β [D − d(x)] }
≤ min

β≥0
max
x∈Q

{ 〈s, x − x0〉 + β [D − d(x)] }
≤ βD + Vβ(s).

��
Consider now the sequences

Xk = {xi }k
i=0 ⊂ Q, Gk = {gi }k

i=0 ⊂ E∗, �k = {λi }k
i=0 ⊂ R+.

Typically, the test points xi and the weights λi are generated by some algorithmic
scheme and the points gi are computed by a black-box oracle G(·):

gi = G(xi ), i ≥ 0,

which is related to a specific convex problem. In this paper we consider only the
problem instances, for which there exists a point x∗ ∈ Q satisfying the condition
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Primal-dual subgradient methods 229

〈g, x − x∗〉 ≥ 0, g ∈ G(x), x ∈ Q. (2.8)

We call such x∗ the primal solution of our problem. At the same time, we are going
to approximate a certain dual solution by the means of observed subgradients. In the
sequel, we will explain the actual sense of this dual object for each particular problem
class.

We are going to approximate the primal and dual solutions of our problem using
the following aggregates:

Sk =
k∑

i=0
λi , x̂k+1 = 1

Sk

k∑
i=0

λi xi ,

sk+1 =
k∑

i=0
λi gi , ŝk+1 = 1

Sk
sk+1,

(2.9)

with x̂0 = x0 and s0 = 0.
As we will see later, the quality of the test sequence Xk can be naturally described

by the following gap function:

δk(D) = max
x

{
k∑

i=0

λi 〈gi , xi − x〉 : x ∈ FD,

}
, D ≥ 0. (2.10)

Using notation (2.9), we get an explicit representation of the gap:

δk(D) =
k∑

i=0

λi 〈gi , xi − x0〉 + ξD(−sk+1). (2.11)

Sometimes we will use an upper gap function

�k(β, D) = βD +
k∑

i=0
λi 〈gi , xi − x0〉 + Vβ(−sk+1)

=
k∑

i=0
λi 〈gi , xi − πβ(−sk+1)〉 + β · (D − d(πβ(−sk+1))

)
.

(2.12)

In view of (2.7) and (2.11), for any non-negative D and β we have

δk(D) ≤ �k(β, D). (2.13)

Since Q is a simple set, the values of the gap functions can be easily computed.
Note that for some D these values can be negative. However, if a solution x∗ of our
problem exists (in the sense of (2.8)), then for

D ≥ d(x∗)
(⇒ x∗ ∈ FD

)
,

the value δk(D) is non-negative independently on the sequences Xk , �k and Gk ,
involved in its definition.
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230 Y. Nesterov

Consider now the generic scheme of dual averaging (DA-scheme).

Initialization: Set s0 = 0 ∈ E∗. Choose β0 > 0.

Iteration (k ≥ 0):

1. Compute gk = G(xk).

2. Choose λk > 0. Set sk+1 = sk + λk gk .

3. Choose βk+1 ≥ βk . Set xk+1 = πβk+1(−sk+1).

(2.14)

Theorem 1 Let the sequences Xk, Gk and �k be generated by (2.14). Then:

1. For any k ≥ 0 and D ≥ 0 we have:

δk(D) ≤ �k(βk+1, D) ≤ βk+1 D + 1

2σ

k∑

i=0

λ2
i

βi
‖gi‖2∗. (2.15)

2. Assume that a solution x∗ in the sense (2.8) exists. Then

1
2σ‖xk+1 − x∗‖2 ≤ d(x∗)+ 1

2σβk+1

k∑

i=0

λ2
i

βi
‖gi‖2∗. (2.16)

3. Assume that x∗ is an interior solution: Br (x∗) ⊆ FD for some positive r and D.
Then

‖ŝk+1‖∗ ≤ 1

r Sk

[
βk+1 D + 1

2σ

k∑

i=0

λ2
i

βi
‖gi‖2∗

]
. (2.17)

Proof 1. In view of (2.13), we need to prove only the second inequality in (2.15). By
the rules of scheme (2.14), for i ≥ 1 we obtain

Vβi+1(−si+1)
(2.2)≤ Vβi (−si+1)

(2.5)≤ Vβi (−si )− λi 〈gi ,∇Vβi (−si )〉 + λ2
i

2σβi
‖gi‖2∗

(2.4)= Vβi (−si )+ λi 〈gi , x0 − xi 〉 + λ2
i

2σβi
‖gi‖2∗.

Thus,

λi 〈gi , xi − x0〉 ≤ Vβi (−si )− Vβi+1(−si+1)+ λ2
i

2σβi
‖gi‖2∗, i = 1, . . . , k.
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Primal-dual subgradient methods 231

The summation of all these inequalities results in

k∑

i=0

λi 〈gi , xi − x0〉 ≤ Vβ1(−s1)− Vβk+1(−sk+1)+ 1

2σ

k∑

i=1

λ2
i

βi
‖gi‖2∗. (2.18)

But in view of (2.6) Vβ1(−s1) ≤ λ2
0

2σβ1
‖g0‖2∗ ≤ λ2

0
2σβ0

‖g0‖2∗. Thus, (2.18) results in
(2.15).

2. Let us assume that x∗ exists. Then,

0
(2.8)≤

k∑
i=0

λi 〈gi , xi − x∗〉

(2.18)≤ 〈sk+1, x0 − x∗〉 − Vβk+1(−sk+1)+ 1
2σ

k∑
i=0

λ2
i
βi

‖gi‖2∗

(2.1)= 〈sk+1, xk+1 − x∗〉 + βk+1d(xk+1)+ 1
2σ

k∑
i=0

λ2
i
βi

‖gi‖2∗

(9.5)≤ βk+1d(x∗)− 1
2βk+1σ‖xk+1 − x∗‖2 + 1

2σ

k∑
i=0

λ2
i
βi

‖gi‖2∗,

and that is (2.16).
3. Let us assume now that x∗ is an interior solution. Then

δk(D) = max
x

{
k∑

i=0
λi 〈gi , xi − x〉 : x ∈ FD

}

≥ max
x

{
k∑

i=0
λi 〈gi , xi − x〉 : x ∈ Br (x∗)

}
≥ r‖sk+1‖∗.

Thus, (2.17) follows from (2.15). ��
The form of inequalities (2.15) and (2.16) suggests some natural strategies for

choosing the parameters βi in the scheme (2.14). Let us define the following sequence:

β̂0 = β̂1 = 1, β̂i+1 = β̂i + 1

β̂i
, i ≥ 1. (2.19)

The advantage of this sequence is justified by the following relation:

β̂k+1 =
k∑

i=0

1

β̂i
, k ≥ 0.
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232 Y. Nesterov

Thus, this sequence can be used for balancing the terms appearing in the right-hand
side of inequality (2.15). Note that the growth of the sequence can be estimated as
follows.

Lemma 3

√
2k − 1 ≤ β̂k ≤ 1

1 + √
3

+ √
2k − 1, k ≥ 1. (2.20)

Proof From (2.19) we have β̂1 = 1 and β̂2
k+1 = β̂2

k + β̂−2
k + 2 for k ≥ 1. This gives

the first inequality in (2.20). On the other hand, since the function β+ 1
β

is increasing

for β ≥ 1 and β̂k ≥ 1, the second inequality in (2.20) can be justified by induction.
��

We will consider two main strategies for choosing λi in (2.14):

• Simple averages: λk = 1.
• Weighted averages: λk = 1

‖gk‖∗ .

Let us write down the corresponding algorithmic schemes in an explicit form. Both
theorems below are straightforward consequences of Theorem 1.

Method of simple dual averages

Initialization: Set s0 = 0 ∈ E∗. Choose γ > 0.

Iteration (k ≥ 0):

1. Compute gk = G(xk). Set sk+1 = sk + gk .

2. Choose βk+1 = γ β̂k+1. Set xk+1 = πβk+1(−sk+1).

(2.21)

Theorem 2 Assume that ‖gk‖∗ ≤ L, k ≥ 0. For method (2.21) we have Sk = k + 1
and

δk(D) ≤ β̂k+1

(
γ D + L2

2σγ

)
.

Moreover, if a solution x∗ in the sense (2.8) exists, then the scheme (2.21) generates
a bounded sequence:

‖xk − x∗‖2 ≤ 2

σ
d(x∗)+ L2

σ 2γ 2 , k ≥ 0.
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Method of weighted dual averages

Initialization: Set s0 = 0 ∈ E∗. Choose ρ > 0.

Iteration (k ≥ 0):

1. Compute gk = G(xk). Set sk+1 = sk + gk/‖gk‖∗.

2. Choose βk+1 = β̂k+1
ρ
√
σ

. Set xk+1 = πβk+1(−sk+1).

(2.22)

Theorem 3 Assume that ‖gk‖∗ ≤ L, k ≥ 0. For method (2.22) we have Sk ≥ k+1
L

and

δk(D) ≤ β̂k+1√
σ

(
D

ρ
+ 1

2ρ

)
.

Moreover, if a solution x∗ in the sense (2.8) exists, then the scheme (2.22) generates
a bounded sequence:

‖xk − x∗‖2 ≤ 1

σ
(2d(x∗)+ ρ2).

In the next sections we show how to apply the above results to different classes of
problems with convex structure.

3 Minimization over simple sets

3.1 General minimization problem

Consider the following minimization problem:

min
x

{ f (x) : x ∈ Q}, (3.1)

where f is a convex function defined on E and Q is a closed convex set. Recall that
we assume Q to be simple, which means computability of exact optimal solutions to
both minimization problems in (2.1).

In order to solve problem (3.1), we need a black-box oracle, which is able to compute
a subgradient of objective function at any test point:4

G(x) ∈ ∂ f (x), x ∈ E .

4 Usually, such an oracle can compute also the value of the objective function. However, we do not need it
in the algorithm.

123



234 Y. Nesterov

Then, we have the following interpretation of the gap function δk(D). Denote

lk(x) = 1
Sk

k∑
i=0

λi [ f (xi )+ 〈gi , x − xi 〉], (gi ∈ ∂ f (xi ))

f̂k(D) = min
x

{lk(x) : x ∈ FD},
f ∗
D = min

x
{ f (x) : x ∈ FD}.

Since f (·) is convex, in view of definition (2.10) of gap function, we have

1

Sk
δk(D) = 1

Sk

k∑

i=0

λi f (xi )− f̂N (D) ≥ f (x̂k+1)− f ∗
D. (3.2)

Thus, we can justify the rate of convergence of methods (2.21) and (2.22) as applied
to problem (3.1). In the estimates below we assume that

‖g‖∗ ≤ L ∀g ∈ ∂ f (x), ∀x ∈ Q.

1. Simple averages. In view of Theorem 2 and inequalities (2.20), (3.2) we have

f (x̂k+1)− f ∗
D ≤ 0.5 + √

2k + 1

k + 1

(
γ D + L2

2σγ

)
. (3.3)

Note that parameters D and L are not used explicitly in this scheme. However, their
estimates are needed for choosing a reasonable value of γ . The optimal choice of γ
is as follows:

γ ∗ = L√
2σD

.

In the method of SDA, the accumulated lower linear model is remarkably simple:

lk(x) = 1

k + 1

k∑

i=0

[ f (xi )+ 〈gi , x − xi 〉].

Thus, its algorithmic scheme looks as follows:

xk+1 = arg min
x∈Q

{
1

k + 1

k∑

i=0

[ f (xi )+ 〈gi , x − xi 〉] + µkd(x)

}
, k ≥ 0, (3.4)

where {µk}∞k=0 is a sequence of positive scaling parameters. In accordance to the rules

of (2.21), we chooseµk = βk+1
k+1 . However, the rate of convergence of the method (3.4)

remains on the same level for any µk = O
(

1√
k

)
. Note that in (3.4) we do not actually

need the function values.
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Note that for method (3.4) we do not need Q to be bounded. For example, we
can have Q = E . Nevertheless, if a solution x∗ of problem (3.1) do exists, then by
Theorem 2 the generated sequence {xk}∞k=0 is bounded. This feature may look surpri-
sing since µk → 0 and no special caution is taken in (3.4) to ensure the boundedness
of the sequence.

2. Weighted averages. In view of Theorem 3 and inequalities (2.20), (3.2) we have

f (x̂k+1)− f ∗
D ≤ 0.5 + √

2k + 1

(k + 1)
√
σ

L

(
1

ρ
D + ρ

2

)
. (3.5)

As in (2.21), parameters D and L are not used explicitly in method (2.22). But now,
in order to choose a reasonable value of ρ, we need a reasonable estimate only for D.
The optimal choice of ρ is as follows:

ρ∗ = √
2D.

3.2 Primal-dual problem

For the sake of notation, in this section we assume that the prox-center of the set Q is
at the origin:

x0 = arg min
x∈Q

d(x) = 0 ∈ E . (3.6)

Let us assume that an optimal solution x∗ of problem (3.1) exists. Then, choosing
D ≥ d(x∗), we can rewrite this problem in an equivalent form:

f ∗ = min
x

{ f (x) : x ∈ FD}. (3.7)

Consider the conjugate function

f∗(s) = sup
x∈E

[ 〈s, x〉 − f (x) ]. (3.8)

Note that for any x ∈ E we have

∂ f (x) ⊆ dom f∗. (3.9)

Since dom f = E , a converse representation to (3.8) is always valid:

f (x) = max
s

[ 〈s, x〉 − f∗(s) : s ∈ dom f∗ ], x ∈ E .

Hence, we can rewrite the problem (3.7) in a dual form:

f ∗ = min
x∈FD

max
s∈dom f∗

[ 〈s, x〉 − f∗(s) ] = max
s∈dom f∗

min
x∈FD

[ 〈s, x〉 − f∗(s) ]
= max

s∈dom f∗
[ −ξD(−s)− f∗(s) ].
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Thus, we come to the following dual problem:

− f ∗ = min
s

[ f∗(s)+ ξD(−s) : s ∈ dom f∗ ]. (3.10)

As usual, it is worth to unify (3.1) and (3.10) in a single primal-dual problem:

0 = min
x,s

[ ψD(x, s)
def= f (x)+ f∗(s)+ ξD(−s) : x ∈ Q, s ∈ dom f∗ ]. (3.11)

Let us show that DA-methods converge to a solution of this problem.

Theorem 4 Let pair (x̂k+1, ŝk+1) be defined by (2.9) with sequences Xk, Gk and �k

being generated by method (2.14) for problem (3.7). Then x̂k+1 ∈ Q, ŝk+1 ∈ dom f∗,
and

ψD(x̂k+1, ŝk+1) ≤ 1

Sk
δk(D). (3.12)

Proof Indeed, point x̂k+1 is feasible since it is a convex combination of feasible points.
In view of inclusion (3.9), same arguments also work for ŝk+1. Finally,

ψD(x̂k+1, ŝk+1) = ξD(−ŝk+1)+ f (x̂k+1)+ f∗(ŝk+1)

(2.9)≤ ξD(−ŝk+1)+ 1
Sk

k∑
i=0

λi [ f (xi )+ f∗(gi )]
(2.1), (3.8)= 1

Sk
ξD(−sk+1)+ 1

Sk

k∑
i=0

λi 〈gi , xi 〉
(2.11), (3.6)= 1

Sk
δk(D).

��
Thus, for corresponding methods, the right-hand sides of inequalities (3.3), (3.5)

establish the rate of convergence of primal-dual function in (3.12) to zero. In the case
of interior solution x∗, the optimal solution of the dual problem (3.10) is attained at
0 ∈ E∗. In this case the rate of convergence of ŝk+1 to the origin is given by (2.17).

In this section, we have shown the abilities of DA-methods (2.14) on the general
primal-dual problem (3.11). However, as we will see in the next sections, these schemes
can provide us with much more detailed dual information. For that we need to employ
an available information on the structure of minimization problem.

3.3 Minimax problems

Consider the following variant of problem (3.1):

min
x

{ f (x) = max
1≤ j≤p

f j (x) : x ∈ Q}, (3.13)
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where f j (·), j = 1, . . . , p, are convex functions defined on E . Of course, this problem
admits a dual representation. Let us fix D ≥ d(x∗). Recall that we denote by �p a
standard simplex in R p:

�p =
⎧
⎨

⎩y ∈ R p
+ :

p∑

j=1

y( j) = 1

⎫
⎬

⎭ .

Then

f ∗ = min
x∈Q

max
1≤ j≤p

f j (x) = min
x∈FD

max
y∈�p

p∑
j=1

y( j) f j (x)

= max
y∈�p

min
x∈FD

p∑
j=1

y( j) f j (x).

Thus, defining φD(y) = min
x∈FD

p∑
j=1

y( j) f j (x), we obtain the dual problem

f ∗ = max
y∈�p

φD(y). (3.14)

Let us show that the DA-schemes generate also an approximation to the optimal
solution of the dual problem. For that, we need to employ the structure of the oracle
G for the objective function in (3.13). Note that in our case

∂ f (x) = Conv {∂ f j (x) : j ∈ I (x)}, I (x) = { j : f j (x) = f (x)}.

Thus, for any gk in the method (2.14) as applied to the problem (3.13) we can define
a vector yk ∈ �p such that

y( j)
k = 0, j /∈ I (xk),

gk = ∑
j∈I (xk)

y( j)
k gk, j ,

(3.15)

where gk, j ∈ ∂ f j (xk) for j ∈ I (xk). Denote ŷk+1 = 1
Sk

k∑
i=0

yi .

Theorem 5 Let pair (x̂k+1, ŷk+1) be defined by sequences Xk, Gk and�k generated
by method (2.14) for problem (3.13). Then this pair is primal-dual feasible and

0 ≤ f (x̂k+1)− φD(ŷk+1) ≤ 1

Sk
δk(D). (3.16)

Proof Indeed, the pair (x̂k+1, ŷk+1) is feasible in view of convexity of primal-dual set
Q ×�p. Further, denote F(x) = ( f1(x), . . . , f p(x))T ∈ R p. Then in view of (3.15),
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for any k ≥ 0 we have

〈gk, xk − x〉 = ∑
j∈I (xk)

y( j)
k 〈gk, j , xk − x〉 ≥ ∑

j∈I (xk)

y( j)
k [ f j (xk)− f j (x)]

= 〈yk, F(xk)− F(x)〉 = f (xk)− 〈yk, F(x)〉.
Therefore

1
Sk
δk(D) = 1

Sk
max
x∈FD

{
k∑

i=0
λi 〈gi , xi − x〉

}

≥ 1
Sk

max
x∈FD

{
k∑

i=0
λi [ f (xi )− 〈yi , F(x)〉]

}

= 1
Sk

k∑
i=0

λi f (xi )− φD(ŷk+1) ≥ f (x̂k+1)− φD(ŷk+1).

��
Let us write down an explicit form of SDA-method as applied to problem (3.13).

Denote by e j the j th coordinate vector in R p.

Initialization: Set l0(x) ≡ 0, m0 = 0 ∈ Z p.

Iteration (k ≥ 0):

1. Choose any j∗k : f j∗k (xk) = f (xk).

2. Set lk+1(x) = k
k+1 lk(x)+ 1

k+1 [ f (xk)+ 〈gk, j∗k , x − xk〉].

3. Compute xk+1 = arg min
x∈Q

{
lk+1(x)+ γ β̂k+1

k+1 d(x)
}

.

4. Update mk+1 = mk + e j∗k .

Output: x̂k+1 = 1
k+1

k∑
i=0

xi , ŷk+1 = 1
k+1 mk+1.

(3.17)

In (3.17), the entry of the optimal dual vector is approximated by the frequency of
detecting the corresponding functional component as the maximal one.

Note that SDA-method can be applied also to a continuous minimax problem. In
this case the objective function has the following form:

f (x) = max
y

[〈y, F(x)〉 : y ∈ Qd},
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where Qd is a bounded closed convex set in R p. For this problem an approximation
to the optimal dual solution is obtained as an average of the vectors y(xk) defined by

y(x) ∈ Arg max
y

[〈y, F(x)〉 : y ∈ Qd}.

(Note that for computing y(x) we need to maximize a linear function over a convex
set.) Corresponding modifications of the method (3.17) are straightforward.

3.4 Problems with simple functional constraints

Let us assume that the set Q in problem (3.1) has the following structure:

Q = { x ∈ Q̄ : Ax = b, F(x) ≤ 0 }, (3.18)

where Q̄ is a closed convex set in E , dim E = n, b ∈ Rm , A is an m × n-matrix, and
F(x) : Q̄ → R p is a component-wise convex function. Usually, depending on the
importance of corresponding functional components, we can freely decide whether
they should be hidden in the set Q̄ or not. In any case, representation of the set Q in
the form (3.18) is not unique; therefore we call the corresponding dual problem the
adjoint one.

Let us introduce dual variables u ∈ Rm and v ∈ R p
+. Assume that an optimal

solution x∗ of (3.1), (3.18) exists and D ≥ d(x∗). Denote

φD(u, v) = min
x∈Q̄

{ f (x)+ 〈u, b − Ax〉 + 〈v, F(x)〉 : d(x) ≤ D}. (3.19)

In this definition d(x) is still a prox-function of the set Q with prox-center x0 ∈ Q.
Then the adjoint problem to (3.1), (3.18) consists in

max
u,v

{φD(u, v) : u ∈ Rm, v ∈ R p
+}. (3.20)

Note that the complexity of computation of the objective function in this problem can
be comparable with the complexity of the initial problem (3.1). Nevertheless, we will
see that DA-methods (2.14) are able to approach its optimal solutions. Let us consider
two possibilities.

1. Let us fix D ≥ d(x∗). Denote by ûk , v̂k the optimal multipliers for essential
constraints in the following optimization problem:

1
Sk
δk = max

x∈Q̄

{
1
Sk

k∑
i=0

λi 〈gi , xi − x〉 : Ax = b, F(x) ≤ 0, d(x) ≤ D

}

= max
x∈Q̄, d(x)≤D

min
u∈Rm ,v∈R p

+
L̂(x, u, v),

L̂(x, u, v) = 1
Sk

k∑
i=0

λi 〈gi , xi − x〉 + 〈u, Ax − b〉 − 〈v, F(x)〉.

(3.21)
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And let x̂k be its optimal solution. Then for any x ∈ Q̄ with d(x) ≤ D we have

〈
− 1

Sk

k∑

i=0

λi gi + AT ûk −
p∑

j=1

v̂
( j)
k ψ j , x − x̂k

〉
≤ 0,

with some ψ j ∈ ∂F ( j)(x̂k), j = 1, . . . , p, and

p∑

j=1

v̂
( j)
k F ( j)(x̂k) = 0.

Therefore, since f and F are convex, for any such x we get

f (x)+ 〈ûk, b − Ax〉 + 〈v̂k, F(x)〉
≥ 1

Sk

k∑
i=0

λi [ f (xi )+ 〈gi , x − xi 〉] + 〈ûk, b − Ax〉

+
p∑

j=1
v̂
( j)
k [F ( j)(x̂k)+ 〈ψ j , x − x̂k〉]

≥ 1
Sk

k∑
i=0

λi [ f (xi )+ 〈gi , x̂k − xi 〉] = 1
Sk

k∑
i=0

λi f (xi ) − 1
Sk
δk(D).

Thus, we have proved that

0 ≤ f (x̂k+1)− φD(ûk, v̂k) ≤ 1

Sk

k∑

i=0

λi f (xi )− φD(ûk, v̂k) ≤ 1

Sk
δk(D). (3.22)

Hence, the quality of this primal-dual object can be estimated by Item 1 of Theorem 1.
2. The above suggestion to form an approximate solution to the adjoint problem

(3.20) by the dual multipliers of problem (3.21) has two drawbacks. First of all, it is
necessary to guarantee that the auxiliary parameter D is sufficiently big. Secondly, the
problem (3.21) needs additional computational efforts. Let us show that the approxi-
mate solution to problem (3.20) can be obtained for free, using the objects necessary
for finding the point πβk+1(−sk+1).

Denote by ūk , v̄k the optimal multipliers for functional constraints in the following
optimization problem:

xk+1 = πβk+1(−sk+1)

= arg max
x∈Q̄

{
− 1

Sk

k∑

i=0

λi 〈gi , x〉 − βk+1

Sk
d(x) : Ax = b, F(x) ≤ 0

}
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= arg max
x∈Q̄

min
u∈Rm ,v∈R p

+
L̄(x, u, v),

L̄(x, u, v) = − 1

Sk

k∑

i=0

λi 〈gi , x〉 − βk+1

Sk
d(x)+ 〈u, Ax − b〉 − 〈v, F(x)〉. (3.23)

Then for any x ∈ Q̄ we have

〈
− 1

Sk

k∑

i=0

λi gi − βk+1

Sk
d ′ + AT ūk −

p∑

j=1

v̄
( j)
k ψ j , x − xk+1

〉
≤ 0,

with some d ′ ∈ ∂d(xk+1) and ψ j ∈ ∂F ( j)(xk+1), j = 1, . . . , p, and

p∑

j=1

v̄
( j)
k F ( j)(xk+1) = 0.

Therefore, for all such x we obtain

f (x)+ 〈ūk, b − Ax〉 + 〈v̄k, F(x)〉

≥ 1

Sk

k∑

i=0

λi [ f (xi )+ 〈gi , x − xi 〉] + 〈ūk, b − Ax〉

+
p∑

j=1

v̄
( j)
k [F ( j)(xk+1)+ 〈ψ j , x − xk+1〉]

≥ 1

Sk

k∑

i=0

λi [ f (xi )+ 〈gi , xk+1 − xi 〉] + βk+1

Sk
〈d ′, xk+1 − x 〉

≥ 1

Sk

k∑

i=0

λi f (xi )− βk+1

Sk
d(x)− 1

Sk

[
k∑

i=0

λi 〈gi , xi − xk+1〉 − βk+1d(xk+1)

]
.

Since in definition (3.19) we need d(x) ≤ D, by (2.12) the above estimates results in

φD(ūk, v̄k) ≥ 1

Sk

k∑

i=0

λi f (xi )− 1

Sk
�(βk+1, D). (3.24)

Hence, the quality of this primal-dual object can be estimated by Item 1 of Theorem 1.

4 Saddle point problems

Consider the general saddle point problem:

min
u∈U

max
v∈V

f (u, v), (4.1)
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where U is a closed convex set in Eu , V is a closed convex set in Ev , function f (·, v)
is convex in the first argument on Eu for any v ∈ V , and function f (u, ·) is concave
in the second argument on Ev for any u ∈ U .

For set U we assume existence of prox-function du(·) with prox-center u0, which
is strongly convex on U with respect to the norm ‖ · ‖u with convexity parameter σu .
For the set V we introduce the similar assumptions.

Note that the point x∗ = (u∗, v∗) ∈ Q
def= U × V is a solution to the problem (4.1)

if and only if

f (u∗, v) ≤ f (u∗, v∗) ≤ f (u, v∗) ∀u ∈ U, v ∈ V .

Since for any x
def= (u, v) ∈ Q we have

f (u, v∗) ≤ f (u, v)+ 〈gv, v∗ − v〉 ∀gv ∈ ∂ fv(u, v),
f (u∗, v) ≥ f (u, v)+ 〈gu, u∗ − u〉 ∀gu ∈ ∂ fu(u, v),

we conclude that

〈gu, u − u∗〉 + 〈−gv, v − v∗〉 ≥ 0 (4.2)

for any g = (gu, gv) from ∂ fu(u, v)× ∂ fv(u, v). Thus, the oracle

G : x = (u, v) ∈ Q ⇒ g(x) = (gu(x),−gv(x)) (4.3)

satisfies condition (2.8).
Further, let us fix some α ∈ (0, 1). Then we can introduce the following prox-

function of the set Q:

d(x) = αdu(u)+ (1 − α)dv(v).

In this case, the prox-center of Q is x0 = (u0, v0). Defining the norm for E = Eu × Ev
by

‖x‖ =
[
ασu‖u‖2

u + (1 − α)σv‖v‖2
v

]1/2
.

we get for function d(·) the convexity parameter σ = 1. Note that the norm for the
dual space E∗ = E∗

u × E∗
v is defined now as

‖g‖∗ =
[

1

ασu
‖gu‖2

u,∗ + 1

(1 − α)σv
‖gv‖2

v,∗
]1/2

.

Assuming now the partial subdifferentials of f be uniformly bounded,

‖gu‖u,∗ ≤ Lu, ‖gv‖v,∗ ≤ Lv, ∀g ∈ ∂ fu(u, v)× ∂ fv(u, v), ∀(u, v) ∈ Q,
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we obtain the following bound for the answers of oracle G:

‖g‖2∗ ≤ L2 def= L2
u

ασu
+ L2

v

(1 − α)σv
. (4.4)

Finally, if du(u∗) ≤ Du and dv(v∗) ≤ Dv , then x∗ = (u∗, v∗) ∈ FD with

D = αDu + (1 − α)Dv. (4.5)

Let us apply now to (4.1) SDA-method (2.21). In accordance to Theorem 2, we get
the following bound:

1

Sk
δk(D) ≤ β̂k+1

k + 1
�, �

def= γ D + L2

2γ
,

with L and D defined by (4.4) and (4.5) respectively. With the optimal choice γ = L√
2D

we obtain

� = [2L2 D
]1/2 =

[
2
(

L2
u

ασu
+ L2

v

(1−α)σv
)

· (αDu + (1 − α)Dv)
]1/2

=
[
2
(

L2
u Du
σu

+ L2
vDv
σv

+ αL2
vDu

(1−α)σv + (1−α)L2
u Dv

ασu

)]1/2

Minimizing the latter expression in α we obtain

� = √
2

(
Lu

√
Du

σu
+ Lv

√
Dv
σv

)
.

Thus, we have shown that under an appropriate choice of parameters we can ensure
for SDA-method the following rate of convergence for the gap function:

1

Sk
δk(D) ≤ β̂k+1

k + 1

√
2

(
Lu

√
Du

σu
+ Lv

√
Dv
σv

)
. (4.6)

It remains to show that the vanishing gap results in approaching the solution of the
saddle point problem (4.1).

Let us introduce two auxiliary functions:

φDv (u) = max
v∈V

{ f (u, v) : dv(v) ≤ Dv},
ψDu (v) = min

u∈U
{ f (u, v) : du(u) ≤ Du}.

In view of our assumptions, φDv (·) is convex on U and ψDu (·) is concave on V .
Moreover, for any u ∈ U and v ∈ V we have

ψDu (v) ≤ f ∗ ≤ φDv (u),
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where f ∗ = f (u∗, v∗).

Theorem 6 Let point x̂k+1 = (ûk+1, v̂k+1) be defined by (2.9) with sequences Xk,
Gk and�k being generated by method (2.14) for problem (4.1) with oracle G defined
by (4.3). Then x̂k+1 ∈ Q and

0 ≤ φDv (ûk+1)− ψDu (v̂k+1) ≤ 1

Sk
δk(D). (4.7)

Proof Indeed, since f (·, v) is convex and f (u, ·) is concave,

τk
def= 1

Sk
max
u∈U

{
k∑

i=0
λi 〈gu(ui , vi ), ui − u〉 : du(u) ≤ Du

}

≥ 1
Sk

max
u∈U

{
k∑

i=0
λi [ f (ui , vi )− f (u, vi )] : du(u) ≤ Du

}

≥ 1
Sk

k∑
i=0

λi f (ui , vi )− min
u∈U

{
f (u, v̂k+1) : du(u) ≤ Du

}

= 1
Sk

k∑
i=0

λi f (ui , vi )− ψDu (v̂k+1).

Similarly,

σk
def= 1

Sk
max
v∈V

{
k∑

i=0
λi 〈gv(ui , vi ), v − vi 〉 : dv(v) ≤ Dv

}

≥ 1
Sk

max
v∈V

{
k∑

i=0
λi [ f (ui , v)− f (ui , vi )] : dv(v) ≤ Dv

}

≥ max
v∈V

{
f (ûk+1, v) : dv(v) ≤ Dv

}− 1
Sk

k∑
i=0

λi f (ui , vi )

= φDv (ûk+1)− 1
Sk

k∑
i=0

λi f (ui , vi ).

Thus,

φDv (ûk+1)− ψDu (v̂k+1) ≤ τk + σk

≤ 1

Sk
max
x∈Q

{
k∑

i=0

λi 〈g(xi ), xi − x〉 : d(x) ≤ αDu + (1 − α)Dv

}
= 1

Sk
δk(D).

��

Note that we did not assume boundedness of the sets U and V . Parameter D from
inequality (4.7) does not appear in DA-method (2.14) in explicit form.
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5 Variational inequalities

Let Q be a closed convex set endowed, as usual, with a prox-function d(x). Consider
a continuous operator V (·) : Q → E∗, which is monotone on Q:

〈V (x)− V (y), x − y〉 ≥ 0 ∀x, y ∈ Q.

In this section we are interested in variational inequality problem (VI):

Find x∗ ∈ Q: 〈V (x), x − x∗〉 ≥ 0 ∀x ∈ Q. (5.1)

Sometimes this problem is called a weak variational inequality. Since V (·) is conti-
nuous and monotone, the problem (5.1) is equivalent to its strong variant:

Find x∗ ∈ Q: 〈V (x∗), x − x∗〉 ≥ 0 ∀x ∈ Q. (5.2)

We assume that for this problem there exists at least one solution x∗.
Let us fix D > d(x∗). A standard measure for quality of approximate solution to

(5.1) is the restricted merit function

fD(x) = max
y∈Q

{〈V (y), x − y〉 : d(y) ≤ D}. (5.3)

Let us present two important facts related to this function (our exposition is partly
taken from Sect. 2 in [13]).

Lemma 4 Function fD(x) is well defined and convex on E. For any x ∈ Q we
have fD(x) ≥ 0, and fD(x∗) = 0. Conversely, if fD(x̂) = 0 for some x̂ ∈ Q with
d(x̂) < D, then x̂ is a solution to problem (5.1).

Proof Indeed, function fD(x) is well defined since the set FD is bounded. It is convex
in x as a maximum of a parametric family of linear functions. If x ∈ FD , then taking
in (5.3) y = x we guarantee fD(x) ≥ 0. If x ∈ Q and d(x) > D, consider y ∈ Q
satisfying condition

d(y) = D, y = αx + (1 − α)x∗,

for certain α ∈ (0, 1). Then y ∈ FD and

〈V (y), x − y〉 = 1 − α

α
〈V (y), y − x∗〉 ≥ 0.

Thus, fD(x) ≥ 0 for all x ∈ Q. On the other hand, since x∗ is a solution to (5.1),
〈V (y), x∗ − y〉 ≤ 0 for all y from FD . Hence, since x∗ ∈ FD , we get fD(x∗) = 0.

Finally, let fD(x̂) = 0 for some x̂ ∈ Q and d(x̂) < D. This means that x̂ is a
solution of the weak variational inequality 〈V (y), y − x̂〉 ≥ 0 for all y ∈ FD . Since
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V (y) is continuous, we conclude that x̂ is a solution to the strong variational inequality

〈V (x̂), y − x̂〉 ≥ 0 ∀y ∈ FD.

Hence, the minimum of linear function l(y) = 〈V (x̂), y〉, y ∈ FD , is attained at y = x̂ .
Moreover, at this point the constraint d(y) ≤ D is not active. Thus, this constraint
can be removed and we conclude that x̂ is a solution to (5.2) and, consequently, to
(5.1). ��

Let us use for problem (5.1) the oracle G : x → V (x).

Lemma 5 For any k ≥ 0 we have

fD(x̂k+1) ≤ 1

Sk
δk(D). (5.4)

Proof Indeed, since V (x) is a monotone operator,

fD(x̂k+1) = max
x

{〈V (x), x̂k+1 − x〉 : x ∈ FD}

= 1

Sk
max

x

{
k∑

i=0

λi 〈V (x), xi − x〉 : x ∈ FD

}

≤ 1

Sk
max

x

{
k∑

i=0

λi 〈V (xi ), xi − x〉 : x ∈ FD

}
≡ 1

Sk
δk(D).

��
Let us assume that ‖V (x)‖∗ ≤ L for all x ∈ Q. Then, for example, by Theorem 2

we conclude that SDA-method (2.21) as applied to the problem (5.1) converges with
the following rate:

fD(x̂k+1) ≤ β̂k+1

k + 1

(
γ d(x∗)+ L2

2σγ

)
. (5.5)

Note that the sequence {xk}∞k=0 remains bounded even for unbounded feasible set Q:

‖xk − x∗‖2 ≤ 2

σ
d(x∗)+ L2

σ 2γ 2 . (5.6)

6 Stochastic optimization

Let� be a probability space endowed with a probability measure, and let Q be a closed
convex set in E endowed with a prox-function d(x). We are given a cost function

f : Q ×� �→ R.
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This mapping defines a family of random variables f (x, ξ) on�. We assume that the
expectation in ξ , Eξ ( f (x, ξ)) is well-defined for all x ∈ Q. Our problem of interest
is the stochastic optimization problem:

min
x

{
φ(x) ≡ Eξ ( f (x, ξ)) : x ∈ Q

}
. (6.1)

We assume that problem (6.1) is solvable and denote by x∗ one of its solutions with

φ∗ def= φ(x∗). In this section we make the standard convexity assumption.

Assumption 1 For any ξ ∈ �, function f (·, ξ) is convex and sub-differentiable on
Q.

Then, the function φ(x) is convex on Q.
Note that computation of the exact value of φ(x)may not be numerically possible,

even when the distribution of ξ is known. Indeed, if� ⊂ Rm , then computing φ̂, such
that | φ̂− φ(x) |≤ ε̂, may involve up to O

( 1
ε̂m

)
computations of f (x, ξ) for different

ξ ∈ �. Hence, the standard deterministic notion of approximate solution to problem
(6.1) becomes useless.

However, an alternative definition of the solution to (6.1) is possible. Indeed, it is
clear that no solution concept can exclude failures in actual implementation. This is
the very nature of decision under uncertainty not to have full control over the conse-
quences of a given decision. In this context, there is no reason to require that the
computed solution be the result of some deterministic process. A random computa-
tional scheme would be equally acceptable, if the solution meets some probabilistic
criterion. Namely, let x be a random output of some random algorithm. It appears, that
it is enough to assume that this output is good only in average:

E(φ(x))− φ∗ ≤ ε. (6.2)

Then, as it was shown in [14], any random optimization algorithm, which is able
to generate such random output for any ε > 0, can be transformed in an algorithm
generating random solutions with an appropriate level of confidence. In [14] this trans-
formation was justified for a stochastic version of subgradient method (1.3) (which is
known to possess the feature (6.2)).

The goal of this section is to prove that a stochastic version of SDA-method (2.21)
as applied to problem (6.1) is also able to produce a random variable x̃ ∈ Q satis-
fying condition (6.2). In order to justify convergence of the method we need more
assumptions.

Assumption 2 At any point x ∈ Q and any implementation of random vector ξ ∈ �
the stochastic oracle G(x, ξ) always returns a predefined answer f ′(x, ξ) ∈ ∂x f (x, ξ).
Moreover, the answers of the oracle are uniformly bounded:

‖ f ′(x, ξ)‖∗ ≤ L , ∀x ∈ Q, ∀ξ ∈ �.

Let us write down a stochastic modification of SDA-method in the same vein as
[14]. In this section, we adopt notation τ̃ for a particular result of drawing of a random
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variable τ . Thus, all ξ̃k ∈ Rm in the scheme below denote some observations of
corresponding i.i.d. random vectors ξk , which are the identical copies of the random
vector ξ defined in (6.1).

Method of stochastic simple averages

Initialization: Set s̃0 = 0 ∈ E∗. Choose γ > 0.

Iteration (k ≥ 0):

1. Generate ξ̃k and compute g̃k = f ′(x̃k, ξ̃k).

2. Set s̃k+1 = s̃k + g̃k, x̃k+1 = π
γ β̂k+1

(−s̃k+1).

(6.3)

Denote by ξk , k ≥ 0, the collection of random variables (ξ0, . . . , ξk). SSA-method
(6.3) defines two sequences of random vectors

sk+1 = sk+1(ξk) ∈ E∗, xk+1 = xk+1(ξk) ∈ Q, k ≥ 0,

with deterministic s0 and x0. Note that their implementations s̃k+1 and x̃k+1 are dif-
ferent for different runs of SSA-method.

Thus, for each particular run of this method, we can define a gap function

δ̃k(D) = max
x

{
k∑

i=0

〈 f ′(x̃i , ξ̃i ), x̃i − x〉 : x ∈ FD,

}
, D ≥ 0, (6.4)

which can be seen as a drawing of random variable δk(D). Since‖g̃k‖∗ ≤ L , Theorem 2
results in the following uniform bound:

1

Sk
δ̃k(D) ≤ β̂k+1

k + 1

(
γ D + L2

2σγ

)
. (6.5)

Let us choose now D big enough: D ≥ d(x∗). Then

1

Sk
δ̃k(D) ≥ 1

k + 1

k∑

i=0

〈 f ′(x̃i , ξ̃i ), x̃i − x∗〉 ≥ 1

k + 1

k∑

i=0

[ f (x̃i , ξ̃i )− f (x∗, ξ̃i )].

Since all ξi are i.i.d. random vectors, in average we have

Eξk

(
1

Sk
δk(D)

)
≥ 1

k + 1

k∑

i=0

Eξk
( f (xi , ξi ))− φ∗. (6.6)
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Note that the random vector xi is independent on ξ j , i ≤ j ≤ k. Therefore,

Eξk
( f (xi , ξi )) = Eξk

(φ(xi )) ,

and we conclude that

1

k + 1

k∑

i=0

Eξk
( f (xi , ξi )) = 1

k + 1

k∑

i=0

Eξk
(φ(xi )) ≥ Eξk

(
φ

(
1

k + 1

k∑

i=0

xi

))
.

Thus, in view of inequalities (6.5), (6.6), we have proved the following theorem.

Theorem 7 Let the random sequence {xk}∞k=0 be defined by SSA-method (6.3). Then
for any k ≥ 0 we have

Eξk

(
φ

(
1

k + 1

k∑

i=0

xi

))
− φ∗ ≤ β̂k+1

k + 1

(
γ d(x∗)+ L2

2σγ

)
.

7 Applications in modelling

7.1 Algorithm of balanced development

It appears that a variant of DA-algorithm (2.14) has a natural interpretation of certain
rational dynamic investment strategy. Let us discuss an example of such a model.

Assume we are going to develop our property by a given a priori sequence � =
{λk}∞k=0 of consecutive investments of the capital. This money can be spent for buying
certain products with unitary prices

p( j) ≥ 0, j = 1, . . . , N .

All products are perfectly divisible; they are available on the market in unlimited
quantities. Thus, if for investment k we buy quantity X ( j)

k ≥ 0 of each product j ,
j = 1, . . . , N , then the balance equation can be written as

Xk = λk xk, 〈p, xk〉 = 1, xk ≥ 0, (7.1)

where the vectors p = (p(1), . . . , p(N ))T and xk = (x (1)k , . . . x (N ))T are both from
RN .

In order to measure the progress of our property (or, the efficiency of our invest-
ments) we introduce a set of m characteristics (features). Let us assume that after k ≥ 0
investments we are able to measure exactly an accumulated level s(i)k , i = 1, . . . ,m, of
each feature i in our property. On the other hand, we have a set of standards b(i) > 0,
i = 1, . . . ,m, which are treated as lower bounds on “concentration” of each feature
in a perfectly balanced unit of such a property.
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Finally, let us assume that each product j is described by a vector

a j = (a(1)j , . . . , a(m)j )T , j = 1, . . . , N ,

with entries being the unitary concentrations of corresponding characteristics. Intro-
ducing the matrix A = (a1, . . . , aN ) ∈ Rm×N , we can describe the dynamics of
accumulated features as follows:

sk+1 = sk + λk gk, gk = Axk, k ≥ 0. (7.2)

In accordance to our system of standards, the strategy of optimal balanced deve-
lopment can be found from the following optimization problem:

τ ∗ def= max
x,τ

{τ : Ax ≥ τb, 〈p, x〉 = 1, x ≥ 0}. (7.3)

Indeed, denote by x∗ its optimal solution. Then, choosing in (7.2) xk = x∗ we get

sk = Sk · Ax∗ ≥ Sk · τ ∗b.

Thus, the efficiency of such an investment strategy is maximal possible and its quality
even does not depend on the schedule of the payments.

However, note that in order to apply the above strategy, it is necessary to solve in
advance a linear programming problem (7.3), which can be very complicated because
of a high dimension. What can be done if this computation appears to be too difficult?
Do we have some simple tools for approaching the optimal strategy in real life?
Apparently, the latter question has a positive answer.

First of all, let us represent the problem (7.3) in a dual form. From the Lagrangian

L(x, τ, y, λ) = τ + 〈T y, Ax − τb〉 + λ · (1 − 〈p, x〉)

where T is a diagonal matrix, T (i,i) = 1
b(i)

, i = 1, . . . ,m, and corresponding saddle-
point problem

max
τ ; x≥0

min
λ; y≥0

L(x, τ, y, λ),

we come to the following dual representation

τ ∗ = min
y,λ

{λ : AT T y ≤ λp, y ∈ �m}.

Or, introducing the function φ(y) = max
1≤ j≤N

1
p( j) 〈a j , T y〉, we obtain

τ ∗ = min
y

{φ(y) : y ∈ �m}. (7.4)
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Let us apply to problem (7.4) a variant of DA-scheme (2.14). For feasible set of
this problem �m , we choose the entropy prox-function

d(y) = ln m +
m∑

i=1

y(i) ln y(i)

with prox-center y0 = ( 1
m , . . . ,

1
m )

T . Note that d(y) is strongly convex on �m in
l1-norm (1.10) with convexity parameter σ = 1, and for any y ∈ �m we have

d(y) ≤ ln m. (7.5)

Moreover, with this prox-function the computation of projection πβ(s) is very cheap:

πβ(s)
(i) = es(i)/β ·

⎡

⎣
m∑

j=1

es( j)/β

⎤

⎦
−1

, i = 1, . . . ,m, (7.6)

(see, for example, Lemma 4 in [11]).
In the algorithm below, the sequence � is the same as in (7.2).

Algorithm of balanced development

Initialization: Set s0 = 0 ∈ E∗. Choose β0 > 0.

Iteration (k ≥ 0):

1. Form the set Jk =
{

j : 1
p( j) 〈a j , T yk〉 = φ(yk)

}
.

2. Choose any xk ≥ 0, 〈p, xk〉 = 1, with x ( j)
k = 0 for j /∈ Jk .

3. Update sk+1 = sk + λk gk with gk = Axk .

4. Choose βk+1 ≥ βk and for i = 1, . . . ,m define

y(i)k+1 = e−s(i)k+1/(βk+1b(i)) ·
[

m∑
j=1

e−s( j)
k+1/(βk+1b( j))

]−1

.

(7.7)

Note that in this scheme T gk ∈ ∂φ(yk) and

yk+1 = πβk+1

⎛

⎝−T
k∑

j=0

λ j g j

⎞

⎠ .
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Therefore it is indeed a variant of (2.14), and in view of Theorem 1 and (7.5) we have

1
Sk

k∑
i=0

λiφ(yi )− τ ∗ ≤ 1
Sk

(
βk+1 ln m + 1

2 L2
k∑

i=0

λ2
i
βi

)
,

L = max
1≤ j≤N

1
p( j) ‖T a j‖∗ = max

1≤ j≤N ,
1≤i≤m

1
p( j)b(i)

|a(i)j |. (7.8)

BD-algorithm (7.7) admits the following interpretation. Its first three steps describe
a natural investment strategy. Indeed, the algorithm updates a system of personal prices
for characteristics

uk
def= T yk, k ≥ 0.

By these prices, for any product j we can compute an estimate of its utility 〈a j , uk〉.
Therefore, in Step 1 we form a subset of available products with the best quality-price
ratio (Step 1):

Jk =
{

j : 1

p( j)
〈a j , uk〉 = max

1≤i≤N

1

p(i)
〈ai , uk〉

}
.

In Step 2 we share a unit of budget in an arbitrary way among the best products.
And in Step 3 we buy the products within the budget λk and update the vector of
accumulated features. A non-trivial part of interpretation is related to Step 4, which
describes a dependence of the personal prices, developed to the end of period k + 1,
in the vector of accumulated characteristics sk+1 observed during this period. For this
interpretation, we need to explain first the meaning of (7.6).

Relations (7.6) appear in so-called logit variant of discrete choice model (see, for
example, [2]). In this model we need to choose one of m variants with utilities s(i),
i = 1, . . . ,m. The utilities are observed with additive random errors ε(i), which are
i.i.d. in accordance to double-exponential distribution:

F(τ ) = Prob
[
ε(i) ≤ τ

]
= exp

{−e−γ−τ/β} , i = 1, . . . ,m,

where γ ≈ 0.5772 is the Euler’s constant and β > 0 is a tolerance parameter. Then,
the expected observation of the utility function is given by

Uβ(s) = E

(
max

1≤i≤m
[s(i) + ε(i)]

)
,

It can be proved that Uβ(s) = βd∗(s/β)+ const with

d∗(s) = ln

(
m∑

i=0

es(i)
)
.
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Therefore we have the following important expressions for so-called choice probabi-
lities:

Prob
[

s(i) + ε(i) = max
1≤ j≤m

[s( j) + ε( j)]
]

= ∇Uβ(s)
(i) = ∇d∗(s/β)(i) = es(i)/β ·

⎡

⎣
m∑

j=1

es( j)/β

⎤

⎦
−1

, i = 1, . . . ,m,

(compare with (7.6)). The smaller β is, the closer is our choice strategy to deterministic
maximum.

Using the logit model, we can adopt the following behavioral explanation of the
rules of Step 4 in (7.7).

• During the period k + 1 we regularly compare the levels of accumulated features in
relative scale defined by the vector of minimal standards b. Each audit defines the
worst characteristic, for which the corresponding level is minimal.

• The above computations are done with additive errors,5 which satisfy the logit
model.

• To the end of the period we obtain the frequencies y(i)k+1 of detecting the level of
corresponding characteristic as the worst one. Then, we apply the following prices:

u(i)k+1 = 1

b(i)
y(i)k+1, i = 1, . . . ,m. (7.9)

Note that the conditions for convergence of BD-method can be derived from the
right-hand side of inequality (7.8). Assume for example, that we have a sequence of
equal investments λ. Further, during each period we compare average accumulation
of characteristics using the logit model with tolerance parameter µ. Hence, in (7.7)
we take

βk+1 = µ · (k + 1), λk = λ, k ≥ 0.

Defining β0 = µ, we can estimate the right-hand side of inequality (7.8) as follows:

µ

λ
ln m + λL2

2µ
· 2 + ln k

k + 1
, k ≥ 1.

Thus, the quality of our property is stabilized on the level τ ∗ + µ
λ

ln m. In order to
have convergence to the optimal balance, the inaccuracy level µ of audit testing must
gradually go to zero.

5 Note that these errors can occur in a natural way, due to inexact data, for example. However, even if the
actual data and measurements are exact, we need to introduce an artificial randomization of the results.
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7.2 Preliminary planning versus dynamic adjustment

Let us consider a multi-period optimization problem in the following form. For k
consecutive periods, k = 0, . . . , N , our expenses will be defined by different convex
objective functions

f0(x), . . . , fN (x), x ∈ Q,

where Q is a closed convex set. Thus, if we choose to apply for the period k some
strategy xk ∈ Q, then the total expenses are given by

�(X) =
N∑

k=0

fk(xk), X = {xk}N
k=0.

In this model there are several possibilities for defining a rational strategy.
1. If all functions { fk(x)}N

k=0 are known in advance, then we can define an optimal
dynamic strategy X∗ as

xk = x∗
k

def= arg min
x

{ fk(x) : x ∈ Q} , k = 0, . . . , N . (7.10)

Clearly, the value of objective function � at this sequence is as minimal as possible.
However, this strategy has several drawbacks. First of all, it requires a considerable
amount of preliminary computations since it is necessary to solve (N + 1) different
optimization problems. The objective function of each problem must be known in
advance. Finally, we have no control on the distance between two consecutive strategies
xk and xk+1. If the distance is big, the required change may result in additional expenses
which are not included in the model.

2. A less ambitious strategy consists in employing the following optimal solution:

x∗ def= arg min
x

{
f̄N (x)

def= 1

N + 1

N∑

k=0

fk(x) : x ∈ Q

}
. (7.11)

At each period we apply the same variant xk = x∗, k = 0, . . . , N ; we call such a
sequence X∗ the optimal static strategy. Clearly, the computation and implementation
of this strategy is much easier than that of X∗. However, we still need to know all
objective functions in advance.

3. The last possibility consists in launching an adjustment process which generates
somehow a sequence X taking into account the observed information on the objective
function of the current period. No objective functions are available in advance.

Clearly, we cannot expect too much from the last approach. Nevertheless, let us
compare its efficiency with efficiency of sequence X∗. We assume that the sequence
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X is generated by the following variant of SDA-method (2.21).

Initialization: Set s0 = 0 ∈ E∗. Choose γ > 0.

Iterations (k = 0, . . . , N ):

1. Compute gk ∈ ∂ fk(xk) and set sk+1 = sk + gk .

2. Choose βk+1 = γ β̂k+1 and set xk+1 = πβk+1(−sk+1).

(7.12)

Let us assume that for any k = 0, . . . , N we have

‖gk‖∗ ≤ L ∀gk ∈ ∂ fk(x), ∀x ∈ Q.

Then, in view of Theorem 2 we have the following bounds on the gap:

1

N + 1
δN (D) ≤ β̂N+1

N + 1

(
γ d(x∗)+ L

2σγ

)
.

On the other hand, for D ≥ d(x∗) we have

δN (D)

N + 1
= 1

N + 1
max

x

{
N∑

k=0

〈gk, xk − x〉 : x ∈ FD

}

≥ 1

N + 1
max

x

{
N∑

k=0

[ fk(xk)− fk(x)]〉 : x ∈ FD

}

= 1

N + 1

N∑

k=0

fk(xk)− min
x

{
f̄N (x) : x ∈ Q

} = 1

N + 1
�(X)− f̄N (x

∗).

Thus,

1

N + 1
�(X) ≤ f̄N (x

∗)+ β̂N+1

N + 1

(
γ d(x∗)+ L

2σγ

)
, (7.13)

and we come to a rather intriguing conclusion:

For big N , the average efficiency of the dynamic adjustment process (7.12)
becomes comparable with the average efficiency of the optimal static strategy
computed by preliminary planning and based on full information on the future
objective functions.
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8 Discussion

Let us discuss the proposed schemes of dual averaging and compare them with tradi-
tional optimization methods.

1. Divergent series. There are many possibilities for defining the sequences {λk}∞k=0
and {βk}∞k=0, which ensure an appropriate rate of decrease of 1

Sk
δk(D). The choice

λk = 1, βk = γ β̂k, k ≥ 0,

results in 1
Sk
δk(D) = O( 1√

k
). This is the best possible rate of convergence of black-box

methods as applied to nonsmooth minimization problems of unbounded dimension
[9].

Let us check what can be achieved by another choices. Consider, for example,

λk = (k + 1)p, βk = γ (k + 1)q , k ≥ 0.

Note that for λ > −1 we have

k∑

i=0

(i + 1)λ = O

(
1

1 + λ
(k + 1)1+λ

)
.

In view of inequality (2.15), we need to compare the following objects:

βk+1 ≈ (k + 1)q ,
k∑

i=0

λi ≈ 1

1 + p
(k + 1)1+p,

k∑

i=0

λ2
i

βi
≈ 1

1 + 2p − q
(k + 1)1+2p−q .

Thus, the rate of convergence of DA-methods is defined by

max

{
(1 + p)(k + 1)q−p−1,

1 + p

1 + 2p − q
(k + 1)p−q

}
.

Hence, the optimal relation between the powers is q − p = 1
2 . Then we can bound the

gap function by

O

(
max

{
1,

1

p + 0.5

}
p + 1√
k + 1

)
. (8.1)

To conclude, for any p > − 1
2 we can guarantee an optimal order of the rate of

convergence. When p ↓ − 1
2 , then the constant in (8.1) explodes. Nevertheless, for
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p = − 1
2 we can guarantee the following rate:

O

(
1 + ln(k + 1)√

k + 1

)
.

Note that with this variant of parameters, we get

λk = 1√
k + 1

, βk = γ, k ≥ 0. (8.2)

Therefore, the scheme (2.14) reduces to an optimal variant of the standard divergent-
series scheme in its mirror-descent form. In SDA-method (2.21) we choose

λk = 1, βk ≈ γ
√

k + 1, k ≥ 0.

Note that in the smoothing technique [11], which is based on much faster methods,
the strategy for averaging of support functions is much more aggressive:

λk ≈ k + 1, k ≥ 0.

It is interesting that during many years the standard Convex Optimization theory
recommended the worst possible choice of parameters (8.2) (see, for example, [10,
Sect. 3.2.3]).

2. Bundle methods. The scheme (3.4) has a slight similarity with Bundle Method.
However, the differences of these approaches are essential. Indeed,

• in Bundle Method the prox-center is moved after each “essential” iteration, and in
(3.4) the center is fixed;

• in Bundle Method the scaling parameter µk is increasing for finding a point with
better value of objective function. In method (3.4) this parameter is decreasing,
which ensures a faster move of the minimization sequence;

• finally, the optimal worst-case complexity bound O( 1
ε2 ) is not established yet for

Bundle Method. For method (3.4) it follows from (3.3).

At the same time, in practice Bundle methods converges much faster. This can be
explained by the use of much more detailed piece-wise linear model of the objective
function. This model is useless from the viewpoint of worst-case complexity analysis.
Nevertheless, it is still interesting to study the possibility to incorporate it in (3.4).

Acknowledgments The author would like to thank F. Chudak and B. Rangarajan for their very useful
suggestions. Needless to say that the anonymous referees helped a lot in improvement the readability of the
paper.

9 Appendix: Strongly convex functions

Let Q be a closed convex set in E .
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Definition 1 A continuous function d(x) is called strongly convex on Q if Q ⊆ dom d
and there exists a constant σ > 0 such that for all x, y ∈ Q and α ∈ [0, 1] we have

d(αx + (1 − α)y) ≤ αd(x)+ (1 − α)d(y)− 1
2σα(1 − α)‖x − y‖2. (9.3)

We call σ the convexity parameter of d(·).
Consider the following minimization problem:

min
x∈Q

d(x). (9.4)

Lemma 6 If d(·) is strongly convex, then the problem (9.4) is solvable and its solution
x∗ is unique. Moreover, for any x ∈ Q we have

d(x) ≥ d(x∗)+ 1
2σ‖x − x∗‖2. (9.5)

Proof Since d(·) is continuous on Q ⊆ dom d, for existence of a solution of the
problem (9.4) it is enough to show that the level sets of this function are bounded.

Consider the set S = {x ∈ Q : d(x) ≤ M} �= ∅. Assume that this set is not
bounded. Then there exists an unbounded sequence {xk}∞k=0 ⊂ S. Without loss of
generality we can assume that

‖xk − x0‖ ≥ 1, k ≥ 1.

Defineαk = 1/‖xk−x0‖ ∈ [0, 1]. Note thatαk → 0. Consider the sequence {yk}∞k=1 ⊂
Q defined as follows:

yk = αk xk + (1 − αk)x0.

Note that ‖yk − x0‖ = 1, k ≥ 1. On the other hand, since d(·) is strongly convex, we
have

d(yk) ≤ αkd(xk)+ (1 − αk)d(x0)− 1
2σαk(1 − αk)‖xk − x0‖2

≤ M − 1
2σ(1 − αk)‖xk − x0‖ → −∞.

This contradicts to continuity of d.
In view of inequality (9.3), the solution of the problem (9.4) is unique. It remains

to prove inequality (9.5). Indeed, for any x ∈ Q and any α ∈ (0, 1) we have

αd(x)+ (1 − α)d(x∗) ≥ d(αx + (1 − α)x∗)+ 1
2σα(1 − α)‖x − x∗‖2

≥ d(x∗)+ 1
2σα(1 − α)‖x − x∗‖2.

Thus, d(x) ≥ d(x∗)+ 1
2σ(1 − α)‖x − x∗‖2 and we get (9.5) as α → 0. ��
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