Комплексные поверхности,

лекция 12: Построение метрики Годушона

Миша Вербицкий

НМУ/матфак ВШЭ, Москва 28 апреля 2012

Фильтрованные алгебры (повторение)

ОПРЕДЕЛЕНИЕ: (Возрастающая) фильтрация на векторном пространстве V есть последовательность подпространств $V_0 \subset V_1 \subset V_2 \subset ...$ таких, что $\bigcup V_i = V$. Фильтрованная алгебра это алгебра A с фильтрацией $A_0 \subset A_1 \subset A_2 \subset ...$ такая, что $A_i \cdot A_j \subset A_{i+j}$.

ЗАМЕЧАНИЕ: Композиция дифференциальных операторов i-го и j-го порядка имеет порядок $\leqslant i+j$ (докажите это). Это задает фильтрацию

$$\mathsf{Diff}^0(M) \subset \mathsf{Diff}^1(M) \subset \mathsf{Diff}^2(M) \subset \dots$$

на кольце дифференциальных операторов на .

УПРАЖНЕНИЕ: Пусть $D^i \in \mathsf{Diff}^i(M), \ D^j \in \mathsf{Diff}^j(M)$ — дифференциальные операторы. Докажите, что их коммутатор $[D^i, D^j]$ лежит в $\mathsf{Diff}^{i+j-1}(M)$.

ОПРЕДЕЛЕНИЕ: Пусть $A = \bigcup_i A_i$ - ассоциативная алгебра с фильтрацией. Определим умножение на $\bigoplus_i A_i/A_{i-1}$ так, что произведение $a \mod A_{i-1}$ и $b \mod A_{j-1}$ дает $ab \mod A_{i+j-1}$. Такая алгебра называется присоединенной градуированной алгеброй фильтрованной алгебры A.

Алгебра символов (повторение)

УПРАЖНЕНИЕ: Докажите, что присоединенная градуированная алгебра к алгебре дифференциальных операторов коммутативна.

ОПРЕДЕЛЕНИЕ: Эта алгебра называется алгеброй символов дифференциальных операторов.

TEOPEMA: $Diff^i(M)/Diff^{i-1}(M)$ изоморфно пространству сечений расслоения Sym^iTM .

TEOPEMA: Кольцо символов дифференциальных операторов на M изоморфно кольцу функций на T^*M , полиномиальных на всех слоях T_x^*M .

ОПРЕДЕЛЕНИЕ: Пусть $D \in \mathsf{Diff}^i(M)$ - дифференциальный оператор i-го порядка. Его **символ** это его образ в $\mathsf{Diff}^i(M)/\mathsf{Diff}^{i-1}(M) = \mathsf{Sym}^i TM$. Символ это функция на тотальном пространстве кокасательного расслоения T^*M , полиномиальная (и однородная степени i) на слоях T^*M .

Эллиптические операторы (повторение)

ЗАМЕЧАНИЕ: Все рассуждения о дифференциальных операторах из $C^{\infty}M$ в себя можно повторить для дифференциальных операторов из расслоения в расслоение. Пространство $Diff^*(\mathcal{F},\mathcal{G})$ является $Diff^*(M)$ -модулем с фильтрацией, и **его присоединенный градуированный мо-дуль изоморфен** $Sym^*TM \otimes Hom_{C^{\infty}M}(\mathcal{F},\mathcal{G})$ (докажите это).

ОПРЕДЕЛЕНИЕ: Если $D: \mathcal{F} \to \mathcal{G}$ — дифференциальный оператор i-го порядка на векторных расслоениях, его **символ** — сечение векторного расслоения $\operatorname{Sym}^i TM \otimes \operatorname{Hom}(\mathcal{F},\mathcal{G})$. Мы будем рассматривать D как $\operatorname{Hom}(\mathcal{F},\mathcal{G})$ -значную функцию на T^*M , полиномиальную (и однородную степени i) на слоях T^*M .

ОПРЕДЕЛЕНИЕ: Пусть $D: \mathcal{F} \to \mathcal{G}$ — дифференциальный оператор i-го порядка на векторных расслоениях одинакового ранга. Рассмотрим проекцию $\pi: \operatorname{Tot}(T^*M) \to M$. D называется **эллиптическим**, если его символ задает изоморфизм $\pi^*\mathcal{F} \to \pi^*\mathcal{G}$ в каждой точке $\xi \in T^*M$, лежащей вне нулевого сечения T^*M .

Эллиптические операторы второго порядка (повторение)

ПРИМЕР: Дифференциальный оператор второго порядка на $C^{\infty}\mathbb{R}^n$ записывается в виде

$$D(f)f = af + \sum_{i} b_{i} \frac{\partial f}{\partial x_{i}} + \sum_{i,j} c_{i,j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}$$

где $a,\ b_i,\ c_{i,j}$ — гладкие функции, а $x_i,i=1,...,n$ — координаты. Тогда его символ задается функцией $\xi \to \sum_{i,j} c_{i,j} \xi_i \xi_j$, где $\xi=(\xi_1,...,\xi_n)\in T_x^*\mathbb{R}^n$. Этот оператор эллиптичен, если матрица $c_{i,j}$ положительно или отрицательно определена в каждой точке \mathbb{R}^n .

ЗАМЕЧАНИЕ: По конвенции, считается, что эллиптический оператор второго порядка есть оператор, у которого матрица $c_{i,j}$ положительно определена.

ОПРЕДЕЛЕНИЕ: Эллиптический оператор второго порядка называется униформно эллиптическим, если b_i ограничены в метрике, которая задается $c_{i,j}$ (для компактных многообразий это требование выполнено автоматически).

Сильный принцип максимума (повторение)

TEOPEMA:

(strong maximum principle for second order elliptic equations; Eberhard Hopf, 1927) Пусть M — многообразие, не обязательно компактное, а D: $C^{\infty}M \to C^{\infty}M$ — униформно эллиптический оператор второго порядка, причем D(f)=0 для любой функции f=const"

$$Du = \sum_{i,j} A^{ij} u_{ij} + \sum_{i} B^{i} u_{i},$$

Пусть u — функция такая, что $D(u) \geqslant 0$. Предположим, что u имеет локальный максимум в какой-то точке M. Тогда u — константа.

ПРИМЕР: Пусть M - риманово многообразие. Оператор Лапласа Δ : $C^{\infty}M \to C^{\infty}M$, $\Delta(f) = d^*df$ — эллиптический оператор второго порядка. Его символ равен тензору Римана $g \in \text{Sym}^2 TM$ (проверьте это).

Метрики Годушона

ОПРЕДЕЛЕНИЕ: Пусть ω - эрмитова форма комплексного эрмитова многообразия M, $\dim_{\mathbb{C}} M = n$. Метрика на M называется метрикой Годушона, если $\partial \overline{\partial}(\omega^{n-1}) = 0$.

ТЕОРЕМА: (П. Годушон, 1977) Пусть (M, ω) – компактное, комплексное, эрмитово n-мерное многообразие. Тогда существует единственная (с точностью до постоянного множителя) положительная функция $\psi \in C^{\infty}M$ такая, что $\psi\omega$ - метрика Годушона.

Доказательство теоремы Годушона следует из сильного принципа максимума и теоремы об индексе для эллиптических операторов.

Ограниченные операторы

ОПРЕДЕЛЕНИЕ: Пусть V_1 , V_2 - пространства с нормой. Линейный оператор $E: V_1 \to V_2$ называется **ограниченным**, если существует константа C такая, что |E(v)| < C|v| для любого $v \in V_1$.

ОПРЕДЕЛЕНИЕ: Норма ограниченного оператора как супремум |E(v)| на единичной сфере $\{v \in V_1 \mid |v| = 1\}$.

ЗАМЕЧАНИЕ: Оператор на банаховом пространстве непрерывен тогда и только тогда, когда он ограниченный.

ТЕОРЕМА: (Банаха об обратном операторе) Если образ ограниченного оператора $F: H_1 \to H_2$ замкнут, то он задает гомеоморфизм между $H_1/\ker F$ и $\operatorname{im} F$.

УПРАЖНЕНИЕ: Докажите это.

ОПРЕДЕЛЕНИЕ: Оператор называется **конечномерным**, если его образ конечномерен.

Фредгольмовы операторы

ОПРЕДЕЛЕНИЕ: Ограниченный оператор $F: H_1 \to H_2$ на гильбертовых пространствах называется фредгольмовым (Fredholm), если его образ замкнут, а ядро и коядро конечномерны.

УПРАЖНЕНИЕ: Пусть $F: H_1 \to H_2$ — ограниченный оператор. Докажите, что следующие утверждения равносильны. (1) F фредгольмов. (2) Существует ограниченный оператор $G: H_2 \to H_1$ такой, что $FG = \mathrm{Id}_{H_1} + K_1$, $GF = \mathrm{Id}_{H_2} + K_2$, а операторы K_1 , K_2 конечномерны.

УПРАЖНЕНИЕ: Пусть $F: H_1 \to H_2, G: H_2 \to H_3$ - ограниченные операторы. Докажите, что GF фредгольмов, если F и G фредгольмовы.

УПРАЖНЕНИЕ: Пусть GF и FG фредгольмовы. Докажите, что F и G оба фредгольмовы.

УПРАЖНЕНИЕ: Докажите, что сумма фредгольмова оператора и конечномерного снова фредгольмова.

Фредгольмовы операторы открыты в операторной топологии

ЗАМЕЧАНИЕ: Для любого фредгольмова оператора F, найдется G такой, что FG = 1 + K, GF = 1 + K', причем K и K' конечномерны, а G тоже фредгольмов.

TEOPEMA: Пусть оператор $F: H \to H$ фредгольмов. **Тогда существу**ет $\varepsilon > 0$ такое, что для любого оператора $G \in \operatorname{End}(H)$, удовлетворяющего $|G - F| < \varepsilon$, оператор G также фредгольмов.

Доказательство. Шаг 1: Пусть $G_1 = G - F$. Если F тождественный оператор, имеем

$$(Id_H + G_1)^{-1} = Id_H - G_1 + G_1^2 - G_1^3 + \dots$$

причем ряд $Id_H - G_1 + G_1^2 - G_1^3 + \dots$ сходится для $|G_1| < 1$.

Шаг 2: Для произвольного фредгольмового F, найдем F_1 такой, что $FF_1 = \operatorname{Id}_H + K$ и $F_1F = \operatorname{Id}_H + K'$ а K, K' конечномерные, и напишем

$$GF_1 = (G_1 + F)F_1 = Id_H + K + G_1F_1.$$

Норма G_1F_1 ограничена $|F_1||G_1|$. Б силу шага 1, для $|G_1|<|F_1|^{-1}$, оператор $\mathrm{Id}_H+G_1F_1$ обратим, а оператор $GF_1=\mathrm{Id}_H+K+G_1F_1$ фредгольмов как сумма конечномерного и фредгольмова.

Индекс фредгольмова оператора

ОПРЕДЕЛЕНИЕ: Индексом фредгольмова оператора F называется число dim ker F — dim coker F.

УПРАЖНЕНИЕ: Докажите, что индекс F' = F + K равен индексу F, для любого конечномерного оператора $K: H_1 \to H_2$.

ЗАМЕЧАНИЕ: Индекс фредгольмовых операторов согласован с композицией: $\operatorname{ind}(FG) = \operatorname{ind} F + \operatorname{ind} G$.

Индекс фредгольмова оператора (продолжение)

УТВЕРЖДЕНИЕ: Пусть $F: H_1 \to H_2$ фредгольмов оператор, а F_1 такой, что $FF_1 = \mathrm{Id}_H + K$, для конечномерного K. **Тогда для любого** $G \in \mathrm{Hom}(H_1, H_2)$, удовлетворяющего $|G - F| < \|F_1\|^{-1}$, индексы G и F равны.

Доказательство. Шаг 1: Очевидно,

$$GF_1 = \operatorname{Id}_H + K + (G - F)F_1$$

Оператор $\mathrm{Id}_H + (G-F)F_1$ обратим для $|(G-F)| < |F_1|^{-1}$, значит, имеет индекс 0, а оператор $\mathrm{Id}_H + (G-F)F_1 + K$ имеет тот же самый индекс, потому что индекс не меняется от добавления конечномерного оператора. Мы получили, что индекс GF_1 равен нулю.

Шаг 2: Поскольку $FF_1 = \mathrm{Id}_H + K$, ind $FF_1 = 0$.

Шаг 3: В силу аддитивности индекса, 0 = $\operatorname{ind} GF_1 = \operatorname{ind} FF_1$ влечет $\operatorname{ind} F = \operatorname{ind} G$. ■

ЗАМЕЧАНИЕ: Мы получили, что множество фредгольмовых операторов открыто в множестве всех ограниченных операторов, с топологией, которая задается нормой, а отображение $F \to \text{ind } F$ локально постоянно.

Основная теорема теории эллиптических операторов

ОПРЕДЕЛЕНИЕ: Пусть F - расслоение со связностью и метрикой на M. Определим соболевскую L^2 -норму, ассоциированную со связностью и метрикой на пространстве сечений F по формуле

$$|f|_s^2 = \sum_{i=0}^s \int |\nabla^i f|^2 \text{Vol}$$

где $\nabla^i - i$ -я степень связности, а $|\cdot|$ – естественная метрика на расслоении $\Lambda^1(M)^{\otimes i} \otimes F$, индуцированная метрикой на M и F. Соответствующее гильбертово пространство обозначается $L^2_s(F)$.

TEOPEMA: (основная теорема теории эллиптических операторов) Пусть $D: F \to G$ — эллиптический оператор i-го порядка. Продолжим D по непрерывности до отображения из $L^2_s(F)$ в $L^2_{s-i}(G)$. **Тогда** D фредгольмов. Более того, все собственные векторы D — бесконечно дифференцируемые сечения F.

ЗАМЕЧАНИЕ: Из того, что все элементы $\ker D$ бесконечно дифференцируемы следует, что $\ker D: L^2_s(F) \to L^2_{s-i}(G)$ не зависит от выбора $s \in \{i, i+1, i+2, ...\}$.

Индекс эллиптического оператора

ЗАМЕЧАНИЕ: Если D эллиптический, его сопряженный оператор D^* — тоже эллиптический.

ОПРЕДЕЛЕНИЕ: Индекс ind эллиптического оператора D это число dim ker D – dim ker D^* .

УТВЕРЖДЕНИЕ: Пусть D_t — семейство эллиптических операторов i-го порядка, непрерывно зависящих от параметра $t \in [0,1]$. **Тогда** ind $D_0 = \operatorname{ind} D_1$.

ДОКАЗАТЕЛЬСТВО: Каждому из D_t соответствует фредгольмов оператор $D_t: L^2_s(F) \to L^2_{s-i}(G)$, его индекс равен индексу D_t , а индекс фредгольмова оператора локально постоянный в норменной топологии.

СЛЕДСТВИЕ: Индекс эллиптического оператора зависит только от символа.

ДОКАЗАТЕЛЬСТВО: Эллиптические операторы с одинаковым символом можно продеформировать друг в друга, не меняя символ, соединив их отрезком в пространстве дифференциальных операторов. ■

Теорема Атьи-Сингера об индексе

ЗАМЕЧАНИЕ: Непрерывные деформации символа тоже не меняют индекса (докажите это). Значит, индекс зависит только от класса гомотопии символа, который можно рассматривать как невырожденное сечение расслоения $\operatorname{Sym}^i TM \otimes \operatorname{Hom}(F,G)$. Такие сечения описываются явно с точностью до гомотопии в терминах характеристических классов (или топологической К-теории) многообразия M и расслоений F и G. Формула Атьи-Зингера - формула, выражающая индекс эллиптического оператора как некоторый полином от этих топологических инвариантов.

Теорема Атьи-Сингера об индексе (продолжение)

Нам понадобится следующая простая форма теоремы об индексе.

TEOPEMA: (теорема Атьи-Зингера для эллиптических операторов второго порядка) Пусть M - гладкое многообразие, а $D: C^{\infty}M \to C^{\infty}M$ — эллиптический оператор второго порядка. Тогда ind D=0.

Доказательство. Шаг 1: Индекс ψ оператора D есть сечение Sym^2TM , то есть метрический тензор на T^* . Условие эллиптичности записывается как $\psi(v,v)\neq 0$, для любого ненулевого $v\in T^*M$, но это значит, что ψ - положительно (или отрицательно) определенная метрика. Предположим, что ψ положительно определена.

Шаг 2: Поскольку положительно определенные метрические тензоры составляют выпуклое подмножество в сечениях Sym^2TM , оно связно, а значит, индекс D одинаковый для каждого D.

Шаг 3: Осталось вычислить индекс для какого-нибудь из эллиптических операторов второго порядка, например, для оператора Лапласа Δ . Но оператор Лапласа самосопряжен, значит,

ind $\Delta = \dim \ker \Delta - \dim \ker \Delta^* = \dim \ker \Delta - \dim \ker \Delta = 0$.

Теорема Годушона

ОПРЕДЕЛЕНИЕ: Пусть ω - эрмитова форма комплексного эрмитова многообразия M, $\dim_{\mathbb{C}} M = n$. Метрика на M называется метрикой Годушона, если $\partial \overline{\partial}(\omega^{n-1}) = 0$.

ТЕОРЕМА: (П. Годушон, 1977) Пусть (M, ω) – компактное, комплексное, эрмитово n-мерное многообразие. **Тогда существует единственная (с точностью до постоянного множителя) положительная функция \psi \in C^{\infty}M такая, что \psi\omega - метрика Годушона.**

Доказательство. Шаг 1: Достаточно найти функцию $\varphi > 0$ такую, что $\partial \overline{\partial} (\varphi \omega^{n-1}) = 0$. Тогда $\psi = \varphi^{1/(n-1)}$.

Шаг 2: Рассмотрим дифференциальный оператор

$$L(\varphi) = \frac{\partial \overline{\partial}(\varphi \omega^{n-1})}{\omega^n}$$

Тогда L - эллиптический оператор, с тем же символом, что у оператора Лапласа (докажите это).

Теорема Годушона (продолжение)

Шаг 2: Рассмотрим дифференциальный оператор

$$L(\varphi) = \frac{\partial \overline{\partial}(\varphi \omega^{n-1})}{\omega^n}$$

Тогда L - эллиптический оператор, с тем же символом, что у оператора Лапласа (докажите это).

Шаг 3: На пространстве $C^{\infty}M$ рассмотрим L^2 -метрику, заданную формулой $(x,y)=\int_M xy\omega^n$. Пусть $\alpha\in C^{\infty}M$. Из формулы Стокса получаем

$$\int_{M} L(\varphi) \alpha \omega^{n} = \int_{M} \partial \overline{\partial} (\varphi \omega^{n-1}) \alpha = \int_{M} \varphi \omega^{n-1} \wedge \partial \overline{\partial} \alpha,$$

то есть $L^*\alpha = \frac{\omega^{n-1} \wedge \partial \overline{\partial} \alpha}{\omega^n}$.

Шаг 4: Поскольку L^* зануляется на константах, его ядро одномерно в силу сильного принципа максимума По формуле индекса для эллиптических операторов второго порядка, ind $L^*=0$, значит, его коядро одномерно. Мы получили, что dim ker L=1.

Теорема Годушона (окончание)

Шаг 5: Для существования метрики Годушона осталось убедиться, что любая ненулевая функция $u\in\ker L$ всюду положительна, либо всюду отрицательна. Тогда $\partial\overline{\partial}(u\omega^{n-1})=0$, значит, $\varphi^{1/(n-1)}\omega$ метрика Годушона.

Шаг 6: Пусть $f \in \text{im } L^*$. Применив принцип максимума, мы получим, что в окрестности минимума f, эта функция строго отрицательна, в окрестности максимума строго положительна (проверьте это)

Шаг 7: Если в ядре L найдется функция u, которая где-то положительна, где-то отрицательна, можно сконструировать функцию $\alpha \in C^{\infty}M$, которая всюду положительна, и удовлетворяет $\int_M u\alpha\omega^n=0$. Но тогда $\alpha\in(\ker L)^*=\operatorname{im} L$, что невозможно в силу утверждения шага 6. Поэтому каждая $u\in\ker L$ либо неположительна, либо неотрицательна.

Шаг 8: Неравенство Харнака: пусть D есть эллиптический оператор на компакте. Тогда для любой области $\Omega \Subset \Omega'$ найдется такая константа C, что для любой $u \in \mathbb{C}^{\infty}\Omega'$, $u \geqslant 0$, D(u) = 0, имеет место $\sup_{\Omega} u \leqslant C \inf_{\Omega} u$. **Из этого сразу следует, что** $u \neq 0$.