Комплексные поверхности,

лекция 9: К3, квадрики, решетки, потоки на многообразиях

Миша Вербицкий

НМУ/матфак ВШЭ, Москва

9 апреля 2012

К3-поверхности (повторение)

ОПРЕДЕЛЕНИЕ: **К3**-поверхность есть комплексная поверхность с $b_1 = 0$ и $c_1 = 0$.

ЗАМЕЧАНИЕ: Все поверхности с $b_1 = 0$ - кэлеровы (Бухсдаль-Ламари).

УТВЕРЖДЕНИЕ: Каноническое расслоение K_M тривиально.

ЗАМЕЧАНИЕ: Теорема Римана-Роха дает $\chi(\mathcal{O}_M) = 2 = \frac{c_2(M)}{12}$, значит, $c_2(M) = 24$. Поскольку $c_2(M)$ есть эйлерова характеристика M, получаем $b_2(M) = 22$.

Это дает ромб Ходжа для К3-поверхности:

УТВЕРЖДЕНИЕ: Когомологии КЗ не имеют кручения.

Пространство периодов для К3-поверхности (повторение)

ОПРЕДЕЛЕНИЕ: Пусть Comp(M) есть множество всех интегрируемых почти комплексных структур на многообразии, с топологией, индуцированной топологией Фреше на пространстве тензоров. **Пространство Тейхмюллера** Teich(M) комплексных структур есть факторпространство $Comp(M)/Diff_0(M)$, где $Diff_0(M)$ есть **группа изотопий** (связная компонента группы диффеоморфизмов).

ОПРЕДЕЛЕНИЕ: Пусть M есть K3-поверхность. Отображение периодов Teich $(M) \stackrel{\mathcal{P}er}{\longrightarrow} \mathbb{P}H^2(M,\mathbb{C})$ сопоставляет каждой комплексной структуре I на M прямую $H^{2,0}(M,I) \subset H^2(M,\mathbb{C})$.

ОПРЕДЕЛЕНИЕ: Пространство периодов К3-поверхности есть пространство $\mathbb{P}\mathrm{er} \subset \mathbb{P}H^2(M,\mathbb{C})$ состоящее из всех прямых $\mathbb{C}\cdot l$ таких, что $l\wedge l=0$ и $l\wedge \bar{l}>0$. Отображение периодов есть отображение Teich $(M)\stackrel{\mathcal{P}\mathrm{er}}{\longrightarrow}\mathbb{P}\mathrm{er}$.

Основной результат прошлой лекции:

ТЕОРЕМА: (Локальная теорема Торелли для К3) Отображение периодов $Teich(M) \xrightarrow{\mathcal{P}er} \mathbb{P}er$ этально, т.е. задается гомеоморфизмом в окрестности каждой точки $I \in Teich(M)$.

Пространство периодов и ++-грассманиан (повторение)

Пусть V — вещественное векторное пространство, снабженное скалярным произведением q. Обозначим за $\mathbb{P}\mathrm{er}(V)$ множество прямых $l \in \mathbb{P}V_{\mathbb{C}}$, удовлетворяющих q(l,l)=0 и $q(l,\bar{l})>0$, и пусть $\mathrm{Gr}_{+,+}(V)$ — пространство ориентированных 2-мерных плоскостей $W\subset V$, таких, что $q|_W$ положительно определено.

УТВЕРЖДЕНИЕ: Для каждого $W \in \mathrm{Gr}_{+,+}(V)$, рассмотрим оператор поворота на $\frac{\pi}{2}$ против часовой стрелки: $I_W: W \to W$. Обозначим за $P(W) \in \mathbb{P}V_{\mathbb{C}}$ прямую, порожденную $x + \sqrt{-1} \; I_W(x)$, для $x \in W$. Тогда P задает биекцию $P: \mathrm{Gr}_{+,+}(V) \to \mathbb{P}\mathrm{er}(V)$.

СЛЕДСТВИЕ: Пространство периодов для К3-поверхности изоморфно $SO(19,3)/SO(2) \times SO(19,1)$.

Гладкие квартики (повторение)

ОПРЕДЕЛЕНИЕ: Гладкой квартикой называется гладкая гиперповерхность в $\mathbb{C}P^n$, заданная неприводимым однородным полиномом степени 4.

ЗАМЕЧАНИЕ: По формуле Эйлера, каноническое расслоение на $\mathbb{C}P^n$ есть $\mathcal{O}(-n-1)$. Формула присоединения, примененная к гладкой поверхности $Z \subset \mathbb{C}P^n$ степени m, дает $N^*Z \otimes_{\mathcal{O}_Z} K_Z = K_{\mathbb{C}P^n}|_Z$, а коль скоро $N^*Z = \mathcal{O}(-m)$ и $K_{\mathbb{C}P^n} = \mathcal{O}(-n-1)$, **имеем** $K_Z = \mathcal{O}(m-n-1)$.

СЛЕДСТВИЕ: Для гладкой квартики в $\mathbb{C}P^3$, n=3, m=4, значит $K_Z=\mathcal{O}_Z$. Поэтому гладкая квартика есть поверхность с тривиальным каноническим классом.

ЗАМЕЧАНИЕ: В дальнейшем, говоря про "гладкие квартики", **я буду** подразумевать квартики размерности 2.

ТЕОРЕМА: Гладкая двумерная квартика является К3-поверхностью.

Пространство $H^{1,1}(M,\mathbb{Z})$ и линейные расслоения (повторение)

ОПРЕДЕЛЕНИЕ: Группа Нерона-Севери NS(M) многообразия M есть образ Pic(M) в $H^2(M,\mathbb{Z})$.

ОПРЕДЕЛЕНИЕ: Обозначим за $H^{1,1}(M,\mathbb{Z})$ множество целочисленных классов когомологий, которые лежат в $H^{1,1}(M)$.

УТВЕРЖДЕНИЕ: Если группа $H^2(M, \mathbb{Z})$ – без кручения, то $NS(M) = H^{1,1}(M, \mathbb{Z})$.

УТВЕРЖДЕНИЕ: Пусть (M,I) есть K3-поверхность, а $W:=\mathcal{P}\mathrm{er}(I)\in G_{+,+}(H^2(M,\mathbb{R})).$ **Тогда** $H^{1,1}_I(M,\mathbb{R})=W^\perp$ (ортогональное дополнение).

СЛЕДСТВИЕ: Для любой К3, $Pic(M,I) = NS(M,I) = H_I^{1,1}(M,\mathbb{Z}) -$ множество целочисленных векторов, ортогональных $W = \mathcal{P}er(I) \in G_{+,+}(H^2(M,\mathbb{R})).$

СЛЕДСТВИЕ: Для общей К3-поверхности, **группа** ${\sf Pic}(M,I)$ **тривиаль- на.**

К3-поверхности с одномерной группой Пикара (повторение)

ТЕОРЕМА: Пусть (M,I) есть K3-поверхность, причем группа $\mathrm{Pic}(M,I) = NS(M,I) = H_I^{1,1}(M,\mathbb{Z})$ одномерна, $NS(M,I) = \mathbb{Z} \cdot \eta$. Обозначим за L образующую $\mathrm{Pic}(M,I),\ c_1(L) = \eta$. Предположим, что (L,L) > 0. **Тогда** L либо L^* обильно.

УТВЕРЖДЕНИЕ: Пусть (M,I) – К3-поверхность, $H_I^{1,1}(M,\mathbb{Z})$ – ее решетка Нерона-Севери. Поверхность (M,I) изоморфна квартике тогда и только тогда, когда $\mathrm{Pic}(M,I) = H_I^{1,1}(M,\mathbb{Z})$ содержит очень обильное расслоение L с (L,L)=4.

ОПРЕДЕЛЕНИЕ: Базисная точка линейного расслоения есть такая точка, где все его сечения зануляются. Расслоение не имеет базисных точек, если оно глобально порождено.

ТЕОРЕМА: Пусть M — К3-поверхность, $Pic(M) = \mathbb{Z}$, а L — образующая группы Пикара, такая, что (L,L) = 4. **Тогда** L **либо** — L **обильно и глобально порождено.**

Пространство Тейхмюллера квартик (повторение)

ОПРЕДЕЛЕНИЕ: Пусть $\eta \in H^2(M, \mathbb{Z})$ — ненулевой класс когомологий на K3, $(\eta, \eta) > 0$. Обозначим за $\mathbb{P}\mathrm{er}_{\eta}$ множество $W \in \mathrm{Gr}_{+,+}(H^2(M, \mathbb{R}))$, ортогональных η . Это пространство называется пространство периодов поляризованных K3.

ОПРЕДЕЛЕНИЕ: Пусть $\eta \in H^2(M, \mathbb{Z})$ есть целочисленный класс на K3, $(\eta, \eta) = 4$. Обозначим за $\operatorname{Teich}^q_\eta$ пространство Тейхмюллера всех $I \in \operatorname{Teich}_\eta$ таких, что линейное расслоение L на (M, I) с $c_1(L) = \eta$ обильно и глобально порождено. Пространство $\operatorname{Teich}^q_\eta$ называется пространством Тейхмюллера квартик.

TEOPEMA: Teich $_{\eta}^{q}$ плотно в Teich $_{\eta}$.

СЛЕДСТВИЕ: По соображениям размерности, пространство $Teich_{\eta}^{sq}$ всех $I \in Teich_{\eta}^{q}$ таких, что (M,I) — гладкая квартика, также плотно в $Teich_{\eta}$.

О плотности квартик (повторение)

ТЕОРЕМА: (будет доказана позже)

Пусть $\mathfrak{R}\subset H^2(M,\mathbb{Z})$ — множество всех векторов v таких, что (v,v)=4. Тогда $\bigcup_{\eta\in\mathfrak{R}}\mathbb{P}$ er $_\eta$ плотно в \mathbb{P} er.

СЛЕДСТВИЕ: $\bigcup_{\eta \in \mathfrak{R}}$ Teich $^q_{\eta}$ плотно в Teich.

СЛЕДСТВИЕ: Поскольку гладкие квартики плотны в пространстве $\operatorname{Sym}^4\mathbb{C}^4/GL(\mathbb{C},4)$ всех квартик, на каждой компоненте $\operatorname{Teich}^q_\eta$ есть плотное множество комплексных структур, соответствующих гладким квартикам.

TEOPEMA: На пространстве Тейхмюллера К3 есть плотное множество точек, соответствующих гладким квартикам.

Поскольку гладкие квартики образуют связное, гладкое семейство, они все диффеоморфны.

СЛЕДСТВИЕ: Любая К3 диффеоморфна гладкой квартике.

Решетки и квадрики

Теорема 1: Пусть $\mathfrak{R} \subset H^2(M,\mathbb{Z})$ – множество всех векторов v таких, что (v,v)=4. **Тогда** $\bigcup_{\eta\in\mathfrak{R}}\mathbb{P}\mathrm{er}_{\eta}$ плотно в $\mathbb{P}\mathrm{er}$.

Другая формулировка

Теорема 2: Пусть $\mathfrak{R} \subset H^2(M,\mathbb{Z})$ — множество всех векторов v таких, что (v,v)=4, а $W_{\mathfrak{R}}\subset \mathrm{Gr}_{+,+}(H^2(M,\mathbb{R}))$ — множество всех 2-плоскостей, ортогональных какому-то $v\in\mathfrak{R}$. **Тогда** $W_{\mathfrak{R}}$ плотно в $\mathrm{Gr}_{+,+}(H^2(M,\mathbb{R}))$.

ОПРЕДЕЛЕНИЕ: Нуль-квадрика, или же световой конус $Null(M) \subset \mathbb{P}H^2(M,\mathbb{R})$ есть множество всех $l \in \mathbb{P}H^2(M,\mathbb{R})$, (l,l) = 0.

Плотные множества в $Gr_{+,+}(H^2(M,\mathbb{R}))$

Пусть $A \subset \mathbb{P}H^2(M,\mathbb{R})$ — подмножество. Обозначим за V(A) множество 2-плоскостей, ортогональных какому-то $v \in A$.

ЗАМЕЧАНИЕ: Если $B \subset \mathbb{P}H^2(M,\mathbb{R})$ — множество предельных точек $A \subset \mathbb{P}H^2(M,\mathbb{R})$, а V(B) плотно в $\mathrm{Gr}_{+,+}(H^2(M,\mathbb{R}))$, то V(A) плотно в $\mathrm{Gr}_{+,+}(H^2(M,\mathbb{R}))$.

ЗАМЕЧАНИЕ: $V(\operatorname{Null}(M)) = \operatorname{Gr}_{+,+}(H^2(M,\mathbb{R}))$. Действительно, для каждой 2-плоскости в $H^2(M,\mathbb{R})$, в ее ортогональном дополнении есть нульвектор.

Объединяя эти два замечания, получаем, что Теорема 2 следует из Теоремы 3.

Теорема 2: Пусть $\mathfrak{R} \subset H^2(M,\mathbb{Z})$ — множество всех векторов v таких, что (v,v)=4, а $W_{\mathfrak{R}}\subset \mathrm{Gr}_{+,+}(H^2(M,\mathbb{R}))$ — множество всех 2-плоскостей, ортогональных какому-то $v\in\mathfrak{R}$. **Тогда** $W_{\mathfrak{R}}$ плотно в $\mathrm{Gr}_{+,+}(H^2(M,\mathbb{R}))$.

Теорема 3:

Множество предельных точек $\mathbb{PR} \subset \mathbb{P}H^2(M,\mathbb{R})$ содержит $\mathrm{Null}(M)$.

Плотные множества в световом конусе

Теорема 3': Любая точка $x \in \text{Null}(M) \subset \mathbb{P}H^2(M,\mathbb{R})$ **является пределом последовательности** $\{\underline{x_i}\} \in \mathbb{P}H^2(M,\mathbb{Z})$, причем каждый $\underline{x_i}$ представлен $x_i \in H^2(M,\mathbb{Z})$, $(x_i,x_i)=4$.

Доказательство. Шаг 1: Рациональные точки плотны в Null(M). Действительно, как минимум одна рациональная точка в Null(M) имеется; обозначим ее за r. Возьмем любую рациональную прямую $S \subset \mathbb{P}H^2(M,\mathbb{R})$, проходящую через r. **Поскольку одна из точек пересечения** $S \cap \text{Null}(M)$ рациональна, другая тоже рациональна.

Шаг 2: Вектор $v \in H^2(M,\mathbb{Z})$ называется **примитивным**, если он порождает $(\mathbb{R} \cdot v) \cap H^2(M,\mathbb{Z})$. Поскольку решетка $H^2(M,\mathbb{Z})$ унимодулярна, **для любого примитивного вектора** $v \in H^2(M,\mathbb{Z})$ **существует** $v' \in H^2(M,\mathbb{Z})$ **такой, что** (v,v')=1.

Шаг 3: Обозначим за $\mathfrak S$ множество примитивных целых нуль-векторов. В силу шага 1, $\mathbb P\mathfrak S$ плотно в $\mathrm{Null}(M)$. Пусть $v\in \mathfrak S$. Осталось найти последовательность $x_i\in H^2(M,\mathbb Z)$ такую, что проективизации $\{\mathbb Px_i\}$ сходятся к $\mathbb Pv$, а $(x_i,x_i)=4$.

Плотные множества в световом конусе (продолжение)

Шаг 3: Обозначим за $\mathfrak S$ множество примитивных целых нуль-векторов. В силу шага 1, $\mathbb P\mathfrak S$ плотно в $\operatorname{Null}(M)$. Пусть $v \in \mathfrak S$. Осталось найти последовательность $x_i \in H^2(M,\mathbb Z)$ такую, что проективизации $\{\mathbb Px_i\}$ сходятся к $\mathbb Pv$, а $(x_i,x_i)=4$.

Шаг 4: Найдем $x \in H^2(M, \mathbb{Z})$ такой, что (v, x) = 1, и пусть $y \in H^2(M, \mathbb{Z})$ – любой целочисленный вектор с ненулевым квадратом, ортогональный v и x. Если $u = \lambda v + x + \mu y$, то $(u, u) = 2\lambda + x^2 + \mu^2 y^2$. Напишем $\lambda(\mu) = -1/2(x^2 + \mu^2 y^2 - 4)$. Тогда $u(\mu) := \lambda(\mu)v + x + \mu y$ – целочисленный вектор (форма пересечения четна), причем $(u(\mu), u(\mu)) = 4$. **Осталось доказать, что** $\lim_{\mu \to \infty} \mathbb{P} u(\mu) = \mathbb{P} v$.

Шаг 5: Выберем на $H^2(M,\mathbb{R})$ положительно-определенную метрику g, таким образом, что g(x,x)=g(y,y)=x(v,v)=1, обозначим за $|\cdot|$ соответствующую норму, $|z|:=g(z,z)^{1/2}$. Тогда $|u(\mu)-\lambda(\mu)v|\leqslant 1+|\mu|$, а $|\lambda(\mu)v|\geqslant |1/2\mu^2y^2|-x^2-4$. Получается, что со стремлением μ к бесконечности, в треугольнике $0,u(\mu),\lambda(\mu)v$ сторона $(0,\lambda(\mu)v)$ растет квадратично по μ , сторона $(u(\mu),\lambda(\mu)v)$ линейно, соответственно, **угол между противолежащими к** $(u(\mu),\lambda(\mu)v)$ **сторонами стремится к нулю.** Мы доказали, что $\mathbb{P}v$ получено как предел целочисленных $\mathbb{P}u(\mu)$, удовлетворяющих $(u(\mu),u(\mu))=4$.

Пространства Фреше (повторение)

ОПРЕДЕЛЕНИЕ: Локально выпуклое топологическое векторное пространство это топологическое векторное пространство, базу топологии которого составляют выпуклые множества.

ОПРЕДЕЛЕНИЕ: Рассмотрим векторное пространство, снабженное набором полунорм $|\cdot|_i$, i=0,1,2,... и топологией, которая задана метрикой вида $d(x,y) = \sum_{i=0}^{\infty} \max(|x-y|_i,2^{-i})$. Такое пространство называется пространством Фреше, если эта метрика полна (т.е. любая последовательность Коши в этой метрике сходится).

ЗАМЕЧАНИЕ: Последовательность точек сходится в топологии Фреше тогда и только тогда, когда она сходится во всех нормах $|\cdot|_i$, а базой топологии Фреше будут бесконечные пересечения ε -шаров вида $\bigcap_{i=0}^{\infty} B_x(\varepsilon_i, |\cdot|_i)$, во всех нормах $|\cdot|_i$ (докажите это).

Топология Фреше на пространстве гладких функций

ОПРЕДЕЛЕНИЕ: Пусть M - гладкое многообразие. Введем на M метрику, и пусть ∇^i : $C^\infty(M) \to \Lambda^1()^{\otimes i}$ - отображение, ставящее в соответствие функции ее i-ю производную (здесь ∇ обозначает связность ЛевиЧивита). Определим на пространстве функций с компактным носителем **топологию** C^k , заданную нормой

$$|\varphi|_{C^k} := \sup_{M} \sum_{i=0}^k |\nabla^i \varphi|.$$

УПРАЖНЕНИЕ: Докажите, что топология C^k не зависит от выбора метрики на M.

ОПРЕДЕЛЕНИЕ: Пространство тест-функций — это пространство функций с компактным носителем, с топологией, заданной набором норм $|\cdot|_{C^i}$.

ЗАМЕЧАНИЕ: Последовательность $\{a_i\}$ сходится в топологии пространства тест-функций тогда и только тогда, когда она сходится во всех $|\cdot|_{C^i}$.

УПРАЖНЕНИЕ: Докажите, что это пространство Фреше. Докажите, что топология на пространстве тест-функций не зависит от выбора метрики на M.

Обобщенные функции

ОПРЕДЕЛЕНИЕ: Обобщенной функцией (распределением) называется функционал на пространстве функций с компактным носителем, непрерывный в одной из топологий C^i . На пространстве распределений задана **слабая топология**, это слабейшая топология, в которой спаривание с пространством тест-функций непрерывно.

УПРАЖНЕНИЕ: Докажите, что слабая топология на обобщенных функциях локально выпукла.

ПРИМЕР: Дельта-функция δ_t — функционал, ставящий φ в соответствие $\varphi(t)$, где $t \in M$ — точка. Легко видеть, что дельта-функция непрерывна в топологии C^0 . Ее производная непрерывна в C^1 , и так далее.

Потоки на многообразиях

ЗАМЕЧАНИЕ: Пусть M - многообразие, B - расслоение. Введем метрику на M и связность с метрикой на B. Формула $|\varphi|_{C^k} := \sup_M \sum_{i=0}^k |\nabla^i \varphi|$ задает норму C^i на пространствах сечений B с компактным носителем. Рассуждая, как для функций, мы строим **топологию Фреше** на пространстве сечений, и проверяем, что она не зависит от выбора метрики.

ОПРЕДЕЛЕНИЕ: (p,q)-потоком на комплексном n-мерном многообразии называется функционал на пространстве $\Lambda_c^{n-p,n-q}(M)$ (n-p,n-q)-форм с компактным носителем, непрерывный в одной из C^i -топологий.

ОПРЕДЕЛЕНИЕ: Пространство тест-форм типа (p,q) на комплексном многообразии это пространство (p,q)-форм с компактным носителем, снабженное структурой пространства Фреше, определенной по нормам C^i .

ЗАМЕЧАНИЕ: Потоки суть функционалы на $\Lambda_c^{n-p,n-q}(M)$, непрерывные в топологии тест-форм.

ЗАМЕЧАНИЕ: Также потоки можно рассматривать как (p,q)-формы с коэффициентами в обобщенных функциях.

Когомологии потоков

ЗАМЕЧАНИЕ: Гладкую (p,q)-форму ψ можно интерпретировать как (p,q)-поток: для любой тест-формы $\alpha \in \Lambda^{n-p,n-q}_c(M)$, рассмотрим функционал $\alpha \to \int_M \psi \wedge \alpha$. **Это задает вложение** $\Lambda^{p,q}(M) \hookrightarrow \mathcal{D}^{p,q}(M)$ из форм в потоки.

УПРАЖНЕНИЕ: Докажите, что пространство потоков — это пополнение $\Lambda^{p,q}(M)$ в слабейшей топологии, в которой спаривание с пространством тест-форм непрерывно.

ЗАМЕЧАНИЕ: Поскольку дифференцирование вдоль векторного поля непрерывно в топологии потоков (проверьте это), на пространстве потоков определен дифференциал де Рама, продолженный по непрерывности из пространства форм, а также дифференциалы Дольбо ∂ и $\overline{\partial}$. В квадрате эти дифференциалы равны нулю (проверьте). Это позволяет определить когомологии де Рама и Дольбо потоков.

Когомологии потоков (продолжение)

УТВЕРЖДЕНИЕ: В пространстве потоков **имеет место лемма Пуанкаре** (о том, что когомологии дифференциала де Рама порождены постоянными функциями) и Дольбо (о том, что когомологии дифференциала Дольбо $\overline{\partial}$ равны голоморфным функциям).

ЗАМЕЧАНИЕ: Из лемм Пуанкаре и Дольбо сразу следует, что потоки являются ацикличными резольвентами к константам и к голоморфным функциям, а значит их когомологии равны обычным когомологиям де Рама и Дольбо.

УПРАЖНЕНИЕ: Выведите из этого, что образ ∂ , d и $\overline{\partial}$ замкнут в пространстве потоков на компактном многообразии.

Положительные (1,1)-формы

ОПРЕДЕЛЕНИЕ: Положительная (1,1)-форма — это вещественная (1,1)-форма α , удовлетворяющая $\alpha(x,Ix)\geqslant 0$, для любого вещественного векторного поля x.

ЗАМЕЧАНИЕ: Локально, положительную (1,1)-форму можно представить в виде $\alpha = \sum_i \sqrt{-1} \ \alpha_i dz_1 \wedge d\overline{z}_i$, где dz_i - базис в $\Lambda^{0,1}(M)$, а $\alpha_i \geqslant 0$ - вещественные функции (проверьте это).

ОПРЕДЕЛЕНИЕ: Выпуклым конусом в векторном пространстве V называется подмножество $A\subset V$, удовлетворяющее следующим свойствам.

- 1. $\forall x, y \in A$, их сумма тоже лежит в A.
- 2. $\forall x \in A, \lambda \in \mathbb{R}^{>0}$, λx также лежит в A.

ЗАМЕЧАНИЕ: Положительные (1,1)-формы образуют выпуклый конус в пространстве вещественных (1,1)-форм.

ОПРЕДЕЛЕНИЕ: Пусть M - комплексное, n-мерное многообразие. (n-1,n-1)-поток η называется положительным если $\int_M \eta \wedge \alpha \geqslant 0$ для любой положительной (1,1)-формы,

Теорема Хана-Банаха

TEOPEMA: (Теорема Хана-Банаха) Пусть V - топологическое векторное пространство, $A\subset V$ - открытый выпуклый конус, не содержащий 0, $W\subset V$ - замкнутое подпространство, а θ_W - непрерывный линейный функционал на W, положительный на $W\cap A$. Тогда на V существует непрерывный линейный функционал θ , такой, что $\theta|_A>0$, а $\theta|_W=\theta_W$.

ДОКАЗАТЕЛЬСТВО: В следующей лекции, если слушатели пожелают. ■

ОПРЕДЕЛЕНИЕ: Строго положительная (1,1)-форма — форма, лежащая во внутренности положительного конуса.

ЗАМЕЧАНИЕ: Многообразие называется кэлеровым, если на нем существует строго положительная, замкнутая форма. Это одно из определений.

ЗАМЕЧАНИЕ: Иначе говоря, кэлеровость равносильна тому, что открытый конус A строго положительных форм пересекается с линейным пространством W замкнутых форм.

Замкнутые потоки

УТВЕРЖДЕНИЕ: Если поток θ , заданный на компактном многообразии, зануляется на замкнутых формах, то он точен.

Доказательство. Шаг 1: Действительно,

$$0 = \int_{M} \theta \wedge d\alpha = (-1)^{\deg \theta} \int_{M} d\theta \wedge \alpha,$$

значит, $d\theta$ зануляется на любой тест-форме, значит, он равен нулю.

Шаг 2: Класс когомологий θ равен нулю, потому что для ненулевого класса когомологий существует замкнутая форма α с $\int_M \theta \wedge \alpha \neq 0$ (в силу двойственности Пуанкаре).

Потоки, зануляющиеся на замкнутых (1,1)-формах

ЛЕММА: Пусть M — компактное комплексное n-мерное многообразие, а $\theta-(n-1,n-1)$ -поток, который зануляется на замкнутых (1,1)-формах. Тогда $\theta-(n-1,n-1)$ -часть точного потока $\tilde{\theta}$.

Доказательство. Шаг 1: Пусть V — пространство 2-форм, с топологией Фреше. Пространство (1,1)-форм замкнуто в V, пространство замкнутых форм тоже замкнуто. Пусть W — подпространство в V, порожденное замкнутыми формами и (1,1)-формами. Оно замкнуто. Определим функционал θ_1 на W так: на (1,1)-формах $\theta_1=\theta$, на замкнутых формах $\theta_1=0$.

Шаг 2: Применим теорему Хана-Банаха к W, построенному выше, и пустому A. Тогда θ_1 продолжается до функционала $\tilde{\theta}$ на V. По построению $\tilde{\theta}$ зануляется на замкнутых 2-формах, значит, в силу предыдущего утверждения он точен. \blacksquare

Теорема Харви-Лоусона

ТЕОРЕМА: (Харви-Лоусон, 1983)

Пусть M — компактное комплексное многообразие. Тогда следующие утверждения равносильны. (а) M не допускает кэлеровой метрики. (б) На M существует ненулевой положительный (n-1,n-1)-поток, который является (n-1,n-1)-частью точного.

Доказательство. Шаг 1: Пусть V - пространство вещественных (1,1)-форм на M, с топологией пространства Фреше, $A\subset V$ — строго положительные (1,1)-формы, а $W\subset V$ — пространство замкнутых (1,1)-форм. Если M не кэлерово, то $A\cap W=\emptyset$. По теореме Хана-Банаха существует непрерывный функционал θ на V, зануляющийся на W, и положительный на A.

Шаг 2: Непрерывные функционалы на V — это (n-1,n-1)-потоки. В силу предыдущей леммы, θ есть (n-1,n-1)-часть точного потока.

Шаг 3: Если положительный поток θ на кэлеровом многообразии (M,ω) является (n-1,n-1)-частью точного потока, то $\int_M \theta \wedge \omega = 0$, но в этом случае $\theta = 0$ (проверьте это).