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1 Introduction

Thanks to Paul Taylor for his diagram package.

2 Motivation

Algebraic topology has grown to an enormous subject today, and most mathematicians are fa-

miliar with the notion of homotopy. It is often the case that a couple of spaces X, Y are not really

meant to be distinguished when it comes to the invariants we want to extract from them. One

such invariant is i-th homotopy group πi(X, x) of a topological space X with a basepoint x. This is

defined as the set of all maps1 (Si, 1) → (X, x) modulo the equivalence relation of homotopy: two

maps f, g : Z → X between Z and X are homotopic if there is a map H : Z × [0, 1]→ X such that

H(z, 0) = f(z) and H(z, 1) = g(z).

One observes that if two spaces X, Y are homotopic, that is, if there is a couple of maps f :

X → Y and g : Y → X, such that their compositions are homotopic to identity maps, then

πi(X, x) ∼= πi(Y, f(x)) for i ∈ N = {0, 1, 2, ...} and some choice of a homotopy f . More generally, one

defines a map f : X → Y to be a weak homotopy equivalence if

πi(f) : πi(X, x)→ πi(Y, f(x))

is an isomorphism for all i ∈ N and x ∈ X.

Homotopy equivalences Heq (that is, maps admitting homotopy inverses) and weak homotopy

equivalences Weq are of great importance in topology. For several reasons one chooses weak homo-

topy eqivalences to work with, and both classes of maps coincide on ’good’ topological spaces (e.g.

CW-complexes). Regardless of the class of maps chosen, one is stuck with the issue of inverting

the elements of this class. This problem naturally arises due to the fact that these maps induce

isomorphisms between all homotopy-theoretic invariants of two (weakly) homotopic spaces.

Some usual constructions result in different spaces when the initial data is replaced by a homo-

topically equivalent one. Consider, for example, the following diagram of spaces:

Sn - ∗

∗
?

We might glue2 the two points along Sn to obtain, unsurprisingly, a point ∗. However, we might

1That is, the maps Si → X which send the distinguished point 1 ∈ Si to x
2that is, take a colimit of this diagram
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consider a diagram

Sn - Dn+1

Dn+1
?

where Sn is included as the boundary of Dn+1’s, and then glue and obtain Sn+1 (in fact, another

way to view this is that we replaced a point by CSn, the cone over Sn, in this diagram and obtained

the space ΣSn, the suspension of Sn, which is equivalent to Sn+1). The construction just outlined is

an example of a homotopy colimit. This is a homotopically correct replacement of a colimit functor

(see below), or, more precisely, the left derived functor of a colimit functor.

In these lectures we shall be concerned with the general machinery applicable to studying the

formal notion of homotopy. We shall not restrict ourselves to topological spaces: it will be possible

to apply this machinery to a whole lot of situations in mathematics. This machinery is called

Model Category Theory. It is true that today there are other techniques, e.g. Joyal and Lurie’s

quasicategories, which aim at solving the same problem and are sometimes more ’natural’ than

model categories. However, it is somewhat ironic that in order to understand quasicategories one

needs a great deal of model category theory (this is why [3] is among the references for this course),

so model categories still remain a tool one should know about in order to study abstract homotopy

theory.

3 Basics of Category Theory

3.1 Categories

We begin our course by discussing the mathematically appropriate framework for homotopical

algebra. This inculdes category theory (which is not surprising), with examples aimed at illuminat-

ing the most known ’categories with weak equivalences’, that is, complexes , categories of (small)

categories, topological spaces and, most importantly, simplicial sets (the latter will be discussed in

much greater generality after the introduction of Model Categories).

Definition 3.1. A category C consists of the following data:

1. A set of objects ObC. For the sake of brevity, we shall write X ∈ C for X ∈ ObC.

2. For every couple of objects X, Y ∈ C, there is a set of morphisms C(X, Y ). We also might

denote this set by more traditional HomC(X, Y ) or even Hom(X, Y ) when the name of the

category we consider is clear from the context. An element of C(X, Y ) will be portrayed as

X - Y
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3. For every triple of objects X, Y, Z of C, there is a composition map

◦ : C(X, Y )× C(Y, Z)→ C(X,Z),

(f, g) 7→ g ◦ f.

4. For every object X of C, there is a distinguished element 1X ∈ C(X,X).

These data are subject to the following:

• The composition is associative:

(h ◦ g) ◦ f = h ◦ (g ◦ f)

whenever the triple h, g, f is composable. In other words, the diagram

C(X, Y )× C(Y, Z)× C(Z, T )
◦ × id

- C(X,Z)× C(Z, T )

C(X, Y )× C(Y, T )

id× ◦
? ◦

- C(X,T )

◦
?

commutes.

• The distinguished elements 1X ∈ C(X,X) serve, for every X, as units for the composition: for

every f : X → Y ,

f ◦ 1X = 1Y ◦ f = f.

The examples of categories are in abundance.

Definition 3.2. Given a category C, its opposite category Cop is defined as follows:

• ObCop = ObC,

• Cop(X, Y ) = C(Y,X).

The composition and units in Cop are naturally induced from those in C.

Definition 3.3. Given two categories C,D, the product of C and D is the category C×D, such that

ObC×D = ObC× ObD and C×D((X1, Y1), (X2, Y2)) = C(X1, X2)×D(Y1, Y2). That is, to give a

map α : (X1, Y1)→ (X2, Y2) in C×D is the same as to give a couple of maps f : X1 → X2 in C and

g : Y1 → Y2 in D (in this case we write α = (f, g)). The composition is induced from that of C and

D.

Example 3.4. A category M with a single object • is essentially specified by the set M(•, •). This

set is equipped with an associative binary operation with unit. Such a set is called monoid. In

particular, for every group G, there is a category BG with the single object • and BG(•, •) = G.
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Example 3.5. The following examples could be called ’concrete’ categories:

• The category Set: objects are sets, for X, Y ∈ Set, Set(X, Y ) is the set of all maps between

X and Y .

• The category Vectk: objects are vector spaces over a field k, for V,W ∈ Vectk, Vectk(V,W )

is the set of all linear maps between V and W .

• The category Top: objects are topological spaces, for X, Y ∈ Top, Top(X, Y ) is the set of all

continious maps from X to Y .

• The category DGVectk: objects are (countably infinite) diagrams of vector spaces over k

. . .
di−2
- V i−1 d

i−1
- V i di

- V i+1 d
i+1
- . . .

(which we shall denote for brevity by V •) with the property that for every i ∈ Z, di+1 ◦ di = 0.

For V •,W • ∈ DGVectk, DGVectk(V
•,W •) is the set of all diagrams

. . .
di−2
V - V i−1 di−1

V - V i diV - V i+1 di+1
V - . . .

. . .
di−2
W - W i−1

f i−1

? di−1
W - W i

f i

? diW- W i+1

f i+1

? di+1
W - . . .

such that ∀i ∈ Z, diW ◦ f i = f i+1 ◦ diV . The composition of f = {f i}i∈Z : U• → V • and

g = {gi}i∈Z : V • → W • is done ’pointwise’: g ◦ f = {gi ◦ f i}i∈Z : U• → W •.

• We can replace vector spaces in the above examples by modules over a ring A to obtain

categories ModA and DGModA.

3.2 ’Size issues’ and universes

One might object that the above examples are ill-defined: there is no such thing as ’the set of all

sets’ (at least in the well-accepted axiomatics of set theory). There are various ways of making this

a non-problem. We choose one of them and assume that

(U) every set is an element of some universe,

where a universe is, so to speak, a set of ’sufficiently small sets’. The axioms of it are summarized

in the definition below:

Definition 3.6. A universe U is a set of sets (called U-sets), such that

I. If x ∈ U and y ∈ x, then y ∈ U,
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II. x, y ∈ U ⇒ {x, y} ∈ U,

III. If I ∈ U and ∀ i ∈ I, xi ∈ U, then ∪i∈Ixi ∈ U,

IV. If x ∈ U, then the set of all subsets P (x) of x belongs to U,

V. N ∈ U, where N is the set of natural numbers.

One can prove that

Proposition 3.7. For a universe U, the following is true:

VI. x ∈ U, y ⊆ x ⇒ y ∈ U

VII. If I ∈ U and ∀ i ∈ I, xi ∈ U, then
∏

i∈I xi ∈ U and
∐

i∈I xi ∈ U.

VIII. x, y ∈ U ⇒ xy = {f : y → x} ∈ U.

IX. Given any set of universes {Ui}, the intersection ∩iUi is a universe,

X. x ∈ U ⇒ x ⊆ U.

Proof. See e.g. ’Grothendieck Universe’ on nLab. �

An opposite of property (X) does not hold: this would, for example, imply U ∈ U, and hence, by

the property (IV), P (U) ⊆ U, which is not possible due to the fact that P (U) has cardinality greater

than U.

Moreover,

Corollary 3.8. For any universe U there exists (due to (IX)) a minimal universe V such that U ∈ V.

Armed with the metamathematics of universes, we can now deal with the size issues in the

following way.

Definition 3.9. Let U ∈ V be a fixed pair of a universe and its successor.

• A U-category C has ObC ⊆ U, and for all objects X, Y C(X, Y ) ∈ U.

• A small U-category I, or U-small category, is a U-category such that Ob I ∈ U.

• The word ’category’ will mean small V-category.

All this is useful for a ’working mathematician’ mostly because it allows to determine when some

operations involving categories are ’hierarchically’ unequivalent. For instance, we shall soon see that

the category of functors between two U-categories is only V-small, and after introducing localization

of categories we shall again see that localization of a category always exists only if one moves to a

higher universe.
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3.3 Functors

It is useful to introduce the notion of a map between different categories, called functor :

Definition 3.10. Let C,D be two categories. A functor F : C→ D consists of the following data:

1. A map F : ObC→ ObD, X 7→ FX,

2. For every X, Y ∈ C, a map3 F : C(X, Y )→ D(FX,FY ), f 7→ Ff .

It is required that

• For every X ∈ C F1X = 1FX ,

• F (g ◦ f) = Fg ◦ Ff .

Definition 3.11. A functor FC→ D is called

• Faithful if ∀X, Y ∈ C, the map C(X, Y )→ D(FX,FY ) is injective.

• Full if ∀X, Y ∈ C, the map C(X, Y )→ D(FX,FY ) is surjective.

• Fully faithful if it is full and faithful.

Definition 3.12. A subcategory C′ of C is a subcollection of objects and morphisms of C, C′ ⊂ C

and C′(X, Y ) ⊂ C(X, Y ), which is closed under composition. There is a tautological faithful functor

C′ ↪→ C. A subcategory is called full if this functor is full.

Example 3.13. This example introduces new categories and at the same time shows some first

examples of functors

• We can organize U-small categories into a U-category CatU or simply Cat: objects are U-small

categories, Cat(I, J) is the set of all functors from I to J .

• Of particular interest is the subcategory ∆ of Cat. Its objects are the categories [n] (n ∈ N =

{0, 1, ...}), depicted as

0 - 1 - . . . - n,

So, Ob [n] = {0, 1, ..., n} and [n](k, l) = {∗} if k ≤ l and is empty otherwise. The composition

in [n] is induced uniquely. For [n], [m] ∈ ∆, we define ∆([n], [m]) to be the set of all functors

from [n] to [m]. For instance, the diagram

0 - 1 - 2

0
?

- 1
?�

3As the reader might note, we repeatedly abuse the notation in this definition.
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represents a functor s : [2]→ [1], given on objects by

0 7→ 0, 1 7→ 1, 2 7→ 1

The action of s on morphisms is automatic. By examining the definiton, we see that a map of

object-sets f : [n]→ [m] can be (uniquely) extended to a functor iff

k ≤ l⇒ f(k) ≤ f(l)

for all k, l ∈ [n].

Example 3.14. Let us mention some examples of functors.

• A functor between BG and BH is seen to be a group homomorphism.

• Let X be an object of C. Then one can associate a couple of functors,

hX : Cop → Set and hX : C→ Set,

in the following way. hX(Y ) := C(Y,X). On morphisms, hX sends f : Z → Y to

f ∗ : C(Y,X)→ C(Z,X), (g : Y → X) 7→ (g ◦ f : Z → X).

hX is defined similarly (e.g. hX(Y ) = C(X, Y )).

• The categories from Example 3.5 admit functors to Set which send an object to its underlying

set4. This functor, in essence, forget the ’structure’ an object (e.g. a vector space) has, and

treat it as a set.

• There is a functor

| − | : ∆→ Top,

which assigns to [n] the standard n-simplex

|[n]| = {(x0, ..., xn) ∈ Rn+1
≥0 |

∑
i

xi = 1}

It sends a morphism θ : [n]→ [m] to |θ| : |[n]| → |[m]|, defined as

|θ|(x0, ..., xn) = (y0, ..., ym),

where

yi =
∑

j∈θ−1(i)

xj

4We leave it to the reader to explain what it means for the category DGVectk.
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if θ−1(i) is nonempty and yi = 0 otherwise. For example, one can see that an inclusion

[n− 1]→ [n] sends the n− 1 simplex to the corresponding face of an n-simplex.

The examples of functors are in abundance and we refer reader to the numerous category theory

textbooks if he or she needs more.

3.4 Yoneda lemma

Let F,G : C→ D be a couple of functors.

Definition 3.15. A morphism of functors from F → G is a functor H : C × [1] → D, such that

Hi0 = F and Hi1 = G, where ik : C→ C×[1] (k = 0, 1) is a functor defined on objects as X 7→ (X, k).

This definition follows the one for a homotopy between maps in topology and is not conven-

tional for category theory textbooxs, so let us recast it in the more familiar form, which we shall

conventionally call natural transformation. Note that a morphism of functors H sends the diagram5

(X, 0)
(idX , 0→ 1)

- (X, 1)

(Y, 0)

(f, id0)

? (idY , 0→ 1)
- (Y, 1)

(f, id1)

?

to the diagram

F (X)
αX- G(X)

F (Y )

F (f)

? αY- G(Y )

G(f)

?

(here αX = H((idX , 0 → 1))). Since H is a functor, the resulting diagram commutes. Thus we see

that specifying H is essentially the same as specifying a set of arrows {αX : F (X) → G(X)}X∈C in

D such that the diagrams like the one above commute.

Definition 3.16. A natural transformation α : F → G is a set of maps {αX : F (X) → G(X)}X∈C
in the category D such that for every f : X → Y in C the diagram

F (X)
αX- G(X)

F (Y )

F (f)

? αY- G(Y )

G(f)

?

5This is induced in C× [1] by a map f : X → Y in C and the unique map 0→ 1 in [1].

9



commutes.

Example 3.17. Many natural transformations we are going to work with will be obtained from

adjunctions, but there are of course other examples. Consider a functor GLn : CRing→ Grp (here

CRing is the category of commutative rings and Grp is the category of groups). This functor sends

a ring A to the group GLn(A) of invertible matrices n× n with elements in A. This is seen to be a

functor (we can always apply a ring morphism A→ B to matrices elementwise).

There is a natural transformation det : GLn → GL1 with component arrows

detA : GLn(A)→ GL1(A) = A∗, M 7→ detM.

Definition 3.18. Given two categories C,D there is a category Fun(C,D): objects are functors

C → D, HomFun(C,D)(F,G) is the set of all natural transformations from F to G, which we shall

denote Nat(F,G).

Remark 3.19. The category Fun(C,D) is V-small whenever C and D are V-small. However, when

C and D are U-categories, Fun(C,D) might not be a U-category. This is only guaranteed when C is

U-small.

A special example of a functor category is the category of presheaves on a category C:

Definition 3.20. Given a U-category6 C, Pr(C) := Fun(Cop,SetU). A presheaf of the form

hX : Cop → SetU, Y 7→ C(Y,X)

for X ∈ C is called representable.

Example 3.21. The category of simplicial sets SSet is defined to be the category Fun(∆op,Set).

The representable functor h[n] is also denoted as ∆n and is called n-simplex.

There are many functors which give examples of simplicial sets.

Example 3.22. The two main examples are:

• There is a functor Cat→ SSet, which acts as

C 7→ NC, NC([n]) = Fun([n],C).

This functor is called the nerve functor.

• There is a functor Top→ SSet, which acts as

X 7→ Sing(X), Sing(X)([n]) = Top(|∆n|, X).

This functor is called the singular complex functor.

6Here SetU denotes a U-category of all sets in U.
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We shall elaborate on these examples later when we start considering simplicial sets in full detail.

For now, we turn to one special property of a presheaf category.

Proposition 3.23 (Yoneda Lemma). For a presheaf F : Cop → Set and an object X ∈ C there

exists a bijection

Nat(hX , F ) ∼= F (X),

which is natural7 in X and F .

Proof. (See e.g. [1] for a detailed exposition) The map

Nat(hX , F )→ F (X)

sends α : hX → F to αX(idX). The inverse map

Nat(hX , F )← F (X)

sends t ∈ F (X) to

t̄Y : hX(Y )→ F (Y ), t̄Y (f) = F (f)(t).

�

Corollary 3.24. For X, Y ∈ C there is a bijection C(X, Y ) ∼= Nat(hX , hY ), that is, the functor

h : C→ Pr(C), X 7→ hX

is fully faithful.

Proof. Nat(hX , hY ) ∼= hY (X) = C(X, Y ). �

We thus see that the category C can be, in effect, identified with the full subcategory of Pr(C).

We shall see below that the Yoneda lemma allows to describe non-representable objects of Pr(C) as

colimits of the objects hX for X ∈ C.

3.5 Adjoints and limits

Let F : C→ D and G : D→ C be a couple of functors.

Definition 3.25. An adjunction F a G is a family of natural isomorphisms

D(FX, Y ) ∼= C(X,GY )

between functors D(F−,−) and C(−, G−) from Cop ×D to Set. F is called left adjoint to G, and

G is called right adjoint to F .

7That is, the bijections form a natural transformation when both sides are treated as functors in the appropriate
variable
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Proposition 3.26. If F : C → D is a functor and there are two functors G1, G2 : D → C right

adjoint to F , then G1
∼= G2.

Proof. Excercise on Yoneda Lemma. �

Example 3.27. A great deal of adjoints comes from the forgetful functor. Take e.g. the category

Vectk and a functor

U : Vectk → Set

which sends a vector space V to the set UV of vectors of V . This functor has a left adjoint

F : Set→ Vectk

. It sends a set S to the vector set
⊕

S k, that is, the free vector space with basis S. One can see

that this defines a functor which also is a left adjoint to U . This is a common example of the ”Forget

Structure — Form Free Object” situation.

There is a special class of adjoint functors which is of great importance.

Consider a category C and a small category I. We may employ the following terminology: a

functor D : I → C will be called an I-diagram, or simply diagram in C. There is a functor

∆I : C→ Fun(I,C)

which sends an object X to the functor

i
u
- j 7→ X

idX- X

That is, the functor ∆I sends an object X to the constant diagram at this object.

Definition 3.28. A colimit functor lim−→I
: Fun(I,C)→ C is a left adjoint of the functor ∆I . A limit

functor lim←−I : Fun(I,C)→ C is a right adjoint of the functor ∆I
8.

Limit and colimit functors need not exist for a category C. It is also often the case that they

exist only for special I and/or are only defined at special D ∈ Fun(I,C).

Given a diagram D, a limit of this diagram is an object lim←−D. Take the adjunction map,

Nat(∆IT,D) ∼= C(T, lim←−D),

and plug T = lim←−D. Then there is idlim←−D ∈ C(lim←−D, lim←−D), which gives a map α : ∆I lim←−D → D.

This natural transformation is, for every object i of I, a family of maps

αi : lim←−D → D(i)

8Most of the time the index I in lim−→I
and lim←−I

will be suppressed.
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in C, such that for any morphism u : i→ j in I the diagram

lim←−D
αi - D(i)

D(j)

D(u)

?

α
j

-

commutes. Moreover, suppose T ∈ C is equipped with a morphism β : ∆IT → D, that is, a family

of maps βi : T → D(i) in C, such that for any morphism u : i→ j in I the diagram

T
βi - D(i)

D(j)

D(u)

?

β
j

-

commutes. Then the adjunction isomorphism tells us that there is a unique map fT : T → lim←−D
such that βi = αi ◦ fT for every i ∈ I. This is the universal property which forms the ’traditional’

definition of a limit of a diagram. We also see that for a diagram D, any two limits, if they exist,

are isomorphic by a unique isomorphism.

We leave it to the reader to determine the universal property of a colimit, which is a limit in Cop,

and turn to the examples.

Example 3.29. (Limits and colimits of selected diagrams)

IN-FIN I = ∅, that is, the empty category. Then Fun(I,C) = ∗, that is, the category with one object

and one morphism, so colimit and limit functors select objects 0 and 1 in C respectively. The

object 0 has the property that, for every X ∈ C, there is a unique map 0 → X. The object 1

has the property that, for every X ∈ C, there is a unique map from X → 1. 0 and 1 are known

as an initial and a final object of C respectively. Note that I = ∅ is the initial object of Cat

and J = ∗ is a final object of Cat.

INV It is not interesting to consider I = ∗. Rather, take I = BG, where G is a group. Let us

consider the case C = Set. Then Fun(BG,Set) = G − Set, the category of sets with left

G-action. Indeed, a functor BG → Set sends the unique object ∗ of BG to a set M , and on

morphisms it gives a map of sets G→ End(M) = Set(M,M).

A limit of M ∈ G − Set would be an object lim←−M of Set with a map of sets i : lim←−M → M

13



such that for every g ∈ G considered as a map g : M →M the diagram

lim←−M
i
- M

M

g

?

i
-

commutes. Moreover, it should satisfy the universal property of a limit. In light of this, take

lim←−M = MG = {m ∈M |∀ g ∈ G gm = m}.

This is the set of invariants of M . It is easily checked that this set satisfies the universal

property of a limit.

Dually,

lim−→M = MG = M/ ∼,

where the equivalence relation is

m ∼ m′ ⇔ ∃g ∈ G : m = gm′.

This is the set of coinvariants of M .

PROD When I = • •, that is, the category with 2 objects and 2 morphisms, an I-diagram in C is

just a couple of objects X and Y in C. In this case, a limit of the diagram with values X, Y is

denoted X × Y or X
∏
Y and is called a product of X and Y , and a colimit of such diagram is

denoted X
∐
Y and is called a coproduct of X and Y . The reader might see that for C = Set,

X
∏
Y is the cartesian product of sets and X

∐
Y is the disjoint union of sets. However, the

reader also might check that for e.g. Vectk, both products and coproducts are given by the

direct sum9 of vector spaces.

PROD’ More generally, one can consider products and coproducts of arbitrary number of objects. This

can be done by taking I to be the category with a U-set of objects and no non-identity mor-

phisms. The (co)limit over a diagram I → C is called a small (co)product of the corresponding

set of objects in C.

FIB There is a diagram category IΠ:

i2

i1 - i0
?

9It is crucial here that I has only a finite set of objects.
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A functor IΠ → C gives a diagram

X2

X1

f1 - X0

f2

?

The limit of this diagram,

X1

∏
X0

X2
- X2

X1

? f1 - X0

f2

?

is called the fibered product of maps fi : Xi → X0, or the pullback of f1 along f2. One checks

explicitly that in many familiar categories, e.g. Set, the pullback can be chosen equal to a

certain subset of the product X1 ×X2:

X1

∏
X0

X2 = {(x1, x2) ∈ X1 ×X2 | f1(x1) = f2(x2) }.

One can try the same construction in other categories, e.g. Top, ModA and Cat.

COFIB Dually, the colimit of a functor IopΠ → C leads us to the following diagram:

X0

f1 - X1

X2

f2

?
- X1

∐
X0

X2

?

The colimit X1

∐
X0
X2 of this diagram is called the cofibered product of f1 and f2, or the

pushout of f1 along f2. In many categories one can compute cofibered products by taking

quotients of coproducts. For instance, in Set one might define the equivalence relation on

X1

∐
X2 which glues x1 ∈ X1 with x2 ∈ X2 iff there exist an element x0 ∈ X0 such that

f1(x0) = x1, f2(x0) = x2. However, usually the procedure of taking quotients may be quite

complicated, as the reader might see on the example of C = Cat.

EQ Lastly, one can consider a diagram of the form

i1
α1-

α2

- i2
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The limit of the corresponding functor,

X
f
-

g
- Y,

is called an equalizer of f and g. Equalizers are familiar for many in categories like Vectk or

ModA: there one observes that the kernel of a map f : M → N has the universal property of

an equalizer of f and the zero map 0 : M → N .

Taking colimit of this diagram gives the dual notion of coequalizer.

Proposition 3.30. ADJOINT FUNCTORS PRESERVE LIMITS (WILL BE ADDED LATER)

Proposition 3.31. For a category C, admitting small (co)limits is the same as admitting small

(co)products and (co)equalisers.

Before we continue, let us introduce the notation. For a category C, define

MorC :=
∐

X,Y ∈C

C(X, Y ).

This is the set of all morphisms of C. (in general only V-small). There are two maps s, t : MorC→
ObC. s sends a morphism f : X → Y to X and t maps f to Y .

Proof. Let us assume that small products and equalizers exist. Then, for a diagram D : I → C we

construct the product

A =
∏
i∈Ob I

D(i).

For every α : i → j ∈ Mor I there are two maps from A to D(j) = D(t(α)). The first one is given

by the projection πt(α) : A → D(t(α)). This map exists since A is the product of all objects in the

diagram, and products come equipped with projections. The second one is given by the composition

D(α) ◦ πs(α) : A → D(s(α)) → D(t(α)). Since these two maps are present for every α ∈ Mor I we

observe that if we form the product

B =
∏

α∈Mor I

D(t(α))

then by the universal property for this product there are two maps

A

∏
α∈Mor I

πt(α)

-∏
α∈Mor I

D(α) ◦ πs(α)

- B

16



Take C to be the equalizer of these two maps. Let c : C → A be the universal map for which we

know that ( ∏
α∈Mor I

πt(α)

)
◦ c =

( ∏
α∈Mor I

D(α) ◦ πs(α)

)
◦ c.

• For every i ∈ I C comes equipped with natural maps to D(i) given by the composition πi ◦ c.
The diagram

C
πi ◦ c- D(i)

D(j)

D(α)

?

π
j ◦
c

-

morever commutes due to the fact that

πj ◦

( ∏
α∈Mor I

πt(α)

)
◦ c = πj ◦

( ∏
α∈Mor I

D(α) ◦ πs(α)

)
◦ c

and one checks that πj ◦
(∏

α∈Mor I πt(α)

)
= πj and πj ◦

(∏
α∈Mor I D(α) ◦ πs(α)

)
= D(α) ◦ πi.

• If T is an object with a set of maps ui : T → D(i) such that

T
ui - D(i)

D(j)

D(α)

?

uj
-

commutes for every α : i→ j then
∏

i∈Ob I ui : T → A is a morphism such that( ∏
α∈Mor I

πt(α)

)
◦

( ∏
i∈Ob I

ui

)
=

( ∏
α∈Mor I

D(α) ◦ πs(α)

)
◦

( ∏
i∈Ob I

ui

)
.

Because of this there is a unique map f : T → C such that everything, what needs to commute,

commutes.

The proof for colimits is automatic after the replacement of C by Cop. �

Corollary 3.32. Small limits and colimits exist in Set, Top, Mod, DGMod.

Proof. Excercise on applying Proposition 3.31 and recognizing (co)products and (co)equalizers in

the corresponding categories. �
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Lemma 3.33. If D is a category such that small (co)limits exist in D, then for any U-category C,

(co)limits exist in the category Fun(C,D).

Proof. Let D : I → Fun(C,D) be a diagram. For every object X in C there is a functor

evX : Fun(C,D)→ D, F 7→ F (X).

This gives a diagram DX = evX ◦D : I → D. Using this, define the functor lim←−D : C→ D: on the

objects

(lim←−D)(X) := lim←−DX .

One checks that this can be extended to morphisms in C and then verifies the required universal

property of a limit. For colimits, the proof is similar. �

Corollary 3.34. For a category C, Pr(C) is complete (that is, admits small limits) and cocomplete

(that is, admits small colimits). In particular, this is true for SSet.

3.6 Geometric realization

We have seen that there are functors N : Cat → SSet and Sing : Top → SSet, and both of

them are defined as the composition of the Hom-functor and some functor ∆→ Cat or ∆→ Top.

In this section we construct left adjoints to these functors.

Definition 3.35. Given a category C and a presheaf F ∈ Pr(C) the category of elements of F is

denoted by CF and consists of the following

• The objects of CF are morphisms p : hX → F , that is, elements of F (X). We shall use the

same letter to denote p ∈ F (X) and p : hX → F .

• An element of CF (p, q) is a commutative triangle in Pr(C):

hX
f

- hY

F

q

�

p
-

If we think about p and q as elements of F (X) and F (Y ), CF (p, q) consists of all morphisms

f : X → Y such that F (f)(q) = p.

There is a functor πF : CF → C which maps p : hX → F to X. This is well-defined due to the Yoneda

lemma.
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Theorem 3.36. Let C be a category, E be a cocomplete category and A : C→ E be a functor. Then

the functor R : E→ Pr(C) which maps an object E to the functor

X 7→ E(A(X), E)

has a left adjoint LE → Pr(C), which maps F to the colimit of the functor A ◦ πF : CF → E.

Moreover, the diagram

Pr(C)
L

- E

C

h

6

A

-

where h is the Yoneda embedding functor, commutes up to isomorphism.

Proof. A morphism of functors

τ : F → R(E)

gives, for every X in C, a morphism τX : F (X) → R(E)(X) = E(A(X), E). That is, for every

p : hX → F we are given a map τX(p) : A(X)→ E. If f : p→ q is a morphism in CF , then, since τ

is a natural transformation, we have τX(p) = τY (q) ◦ A(f). This is a direct consequence of the fact

that diagram

F (Y )
τX- E(A(Y ), E)

F (X)

F (f)

? τY- E(A(X), E)

A(f)∗

?

commutes and that F (f)(q) = p. All this means that we get a morphism of diagrams

τ̃ : A ◦ πF → ∆CF
E

and moreover giving a morphism A◦πF → ∆CF
E is equivalent to specifying a morphism F → R(E).

But the morphism τ̃ is the same as

τ̄ : lim−→A ◦ πF → E.

All constructions are seen to be natural in E and F and so give us the desired adjunction.

If one takes F = hX then, due to the fact that the category ChX has the terminal object idX :

hX → hX we easily check that lim−→AπhX
∼= A(X). This gives us the desired commutativity of L ◦ h

and A. �
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Corollary 3.37. Every presheaf F is isomorphic to the colimit of the diagram of representable func-

tors indexed by CF .

Proof. In Theorem 3.36 take E equal to Pr(C) and A = h. Then use the fact that R(F ) is

canonically isomorphic F and thus R is isomorphic to idPr(C). And idPr(C) is both its own left and

right adjoint. �

Corollary 3.38. There is a functor | − | : SSet→ Top which is left adjoint to Sing : Top→ SSet

and sends the representable functors ∆n = ∆(−, [n]) to the realization of [n]. It is called the geometric

realization functor.

There is also a functor C : SSet→ Cat which is left adjoint to N : Cat→ SSet and sends the

representable functors ∆n = ∆(−, [n]) to [n]. It is called the categorical realization functor.

Remark 3.39. Let us elaborate a bit on the example of SSet. We learnt from Proposition 3.31

that a colimit may be specified as a coequalizer between two small coproducts. That is, if X ∈ SSet

and ∆X is the associated category of elements, then the geometric realization of X can be chosen as

a colimit of the diagram10

∐
α∈Mor ∆X

|∆s(α)|

∐
α∈Mor ∆X

is(α)

-∐
α∈Mor ∆X

it(α) ◦ α
-

∐
∆n∈∆X

|∆n|.

Decyphering it a bit, we see that ∐
∆n∈∆X

|∆n| =
∐
n∈N

X([n])× |∆n|

where the product is taken in Top and X([n]) is given discrete topology. Moreover, examining the

colimit diagram (and keeping in mind Definition 3.35) it is seen that in order to coequalize the two

maps we have to quotient the coproduct
∐

n∈NX([n])× |∆n| by the relations of the form

(X(α)(q), x) ∼ (q, |α|(x)).

Here α : p → q is a map in ∆X, that is, a morphism α : [n] → [m] such that it p ∈ X([n]) is equal

to X(α)(q) for q ∈ X([m]). Also, x ∈ |∆n| is a point of the realization of [n]. These relations exist

for arbitrary n ∈ N, q and x; they appear right after one disassembles the coproducts.

Putting all this together, |X| =
∐

n∈NX([n]) × |∆n|/ ∼, which is the classical expression for

geometric realization functor. The advantage of our approach is that functoriality left-adjointness

of this expression is readily manifest, yet one might have issues understanding what the realization

looks like.

10The notation is a bit ugly and will be explained in a later version.
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The remark applies to the category of simplicial sets as well. That is, in SSet we have

X([k]) =
∐
n∈N

X([n])×∆n([k])/ ∼

where the equivalence relation has the form

(X(α)(q), s) ∼ (q, α(s)).

Here, again, α : p→ q is a map in ∆X, that is, a morphism11 α : [n]→ [m] such that it p ∈ X([n])

is equal to X(α)(q) for q ∈ X([m]). Also, x ∈ ∆n([k]) is a k-simplex of ∆n.

This remark may be used to observe the following property of simplicial sets. Before we state it,

let us give a

Definition 3.40. A n-simplex x of a simplicial set X is called degenerate if there exists a surjective

map ϕ : [n] → [k] in ∆ such that x = X(ϕ)(y) for some k-simplex y. Otherwise x is called non-

degenerate.

Proposition 3.41. For a simplicial set X we have X ∼= lim−→∆nd
X

∆n and |X| ∼= lim−→∆nd
X

|∆n|, where

∆nd
X is a full subcategory of ∆X whose objects p : ∆n → X are nondegenerate simplices.

Proof. Let p = X(ϕ)(q) for a surjective map ϕ : [n]→ [k]. We may assume that q is non-degenerate

though this is not necessary. The relation

(p, s) ∼ (q, ϕ(s)).

shows us the following. Any s ∈ ∆n([m]) should be identified with its image in ∆k([m]). Since ϕ is

surjective we observe that, when we quotient by the equivalence relation, all m-simplices of p become

identified with some m-simplices of q. A similar proof applies to the geometric realization. �

Remark 3.42. Let f : X → Y be a map of simplicial sets. Then we observe that there is a natural

functor, ∆f : ∆X → ∆Y which takes ∆n → X to ∆n → X
f→ Y . However, the construction ∆nd

X is

not functorial in X.

4 Localisation of categories

We now turn to the formal description of categories objects of which may be ’weakly equivalent’

via elements of some distinguished class of morphisms. Surprisingly, there is a lot of words one can

say about such categories and functors between them at the formal level and, unsurprisingly, not

many introduced notions can be proven to exist. This will be solved by the machinery of model

categories, which we shall introduce in the next section.

11So, given the fact that s ∈ ∆n[k] is a morphism s : [k]→ [n], the expression α(s) means α ◦ s : [k]→ [m].
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4.1 Localisers

Definition 4.1. A localiser is a category M together with a set of maps W ⊂ Mor M , called the

set of weak equivalences of M . In this case we might also say that M is a category with weak

equivalences W . A morphism of localisers (M ,W )→ (N ,W ′) is a functor F : M → N such that

F (W ) ⊆ W ′. Such functors are also called homotopically meaningful functors

Stated this way, the notion of a homotopically meaningful functor is usually obtained not from

’working mathematics’ but from formal examples.

Example 4.2. The formalities to keep in mind now follow:

ISO Any category C can be transformed into a localiser (C, IsoC). Here IsoC is the set of all isomor-

phisms of C. Any functor sends isomorphisms to isomorphisms, so we can embed categories

into localisers this way. Also, if (M ,W ) is a localiser, we say that a functor F : M → C is

homotopically meaningful if it is a morphism of localisers (M ,W )→ (C, IsoC).

DIA Let (M ,W ) be a localiser, u : I → J a functor between (small) categories. Then the category

Fun(I,M ) =: M I can be given the structure of a localizer with the set of weak eqiuvalences

WI : a morphism α : F → G in M I is in WI iff for all i ∈ I α(i) : F (i) → G(i) is in W .

Moreover, the functor u induces a functor

u∗ : M J →M I , F 7→ F ◦ u.

It is checked that u∗ is a morphism of localisers (M J ,WJ)→ (M I ,WI).

We shall see later that ’natural’ examples of functors between localisers are not usually homotopi-

cally meaningful ’on the nose’. Before that, let us introduce ’the working mathematician’s’ examples

of localisers themselves.

Example 4.3.

TOP The category of topological spaces Top is usually equipped with the class WTop = Weq, that

is, with the maps X → Y which are weak homotopy equivalences of topological spaces.

SSET The category SSet of simplicial sets has a geometric realization functor | − | : SSet → Top.

We shall make this functor into a morphism of localisers. Define WSSet in Arr(SSet) to be the

set of all maps α : S → S ′ such that |α| : |S| → |S ′| is a weak homotopy equivalence.

CAT The category of small categories Cat is equipped with the class WCat, which consists of all

equivalences of small categories.

An equivalence F : C → D is a functor such that there is a functor G : D → C and natural

isomorphisms F ◦G ∼= idD and G ◦F ∼= idC. It is a theorem that in this case F is fully faithful,

and also for any object Y of D there exists an object X in C, such that Y ∼= F (X). This
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last property means that F is essentially surjective. One can prove that a fully faithful and

essentially surjective functor is an equivalence of categories.

CAT’ A Morita equivalence of categories is a functor F : C → D such that F ∗ : Pr(D) → Pr(C) is

an equivalence of categories. Define ME ⊂ Arr(Cat) to be the set of all Morita equivalences.

One observes that idCat : (Cat,WCat)→ (Cat,ME ) is a morphism of localisers, but not every

Morita equivalence is an equivalence of categories.

CAT” Yet another example is provided by considering the functor N : Cat → SSet. Define H E

to be the set of Thomason equivalences of categories, that is, functors F : C → D such that

|NF | : |NC| → |ND| is a weak homotopy equivalence12

DG Take a ring A and the category DGModA from the Example 3.5. Then there is a Z-indexed

series of functors Hn : DGModA →ModA. On objects, Hn takes M•,

. . .
di−2
M - M i−1 di−1

M - M i diM- M i+1 di+1
M - . . . ,

to Hn(M•) = kerdiM/imd
i−1
M . It can be checked that a morphism of complexes f : M• → N•

gives a morphism Hn(f) : Hn(M•) → Hn(N•) (excercise). We define WDGModA
to be the set

of all morphisms f such that for every n ∈ Z Hn(f) is an isomorphism. Such morphisms are

called quasiisomorphisms of complexes.

4.2 Localisation

Given a localiser (M ,W ) we would like not to distinguish objects connected by (a chain of)

morphisms from W . We shall now formally define what this means.

Definition 4.4. Let (M ,W ) be a localiser. A localisation of M along W is a category M [W −1]

with a functor p : M →M [W −1] such that

1. p is a morphism of localisers (M ,W )→ (M [W −1], IsoM [W −1]),

2. For any category C and a morphism of localisers F : (M ,W ) → (C, IsoC) there is a unique

functor F̄ : M [W −1]→ C such that F = F̄ ◦ p.

Remark 4.5. The definition we used above is ’evil’ in the sense that it requires the functors to be

equal on the nose rather than be isomorphic. We shall see below that in most examples we can get

away with this definition. The definition, however, may be relaxed so to avoid the use of functor

equalities.

Proposition 4.6. For a localiser (M ,W ) with M a U-category, the localisation always exists (as-

suming that the resulting category M [W −1] is small with respect to a higher universe).

12It can be shown that geometric realization of simplicial sets preserves products, and from this one can see that an
equivalence of categories is a Thomason equivalence.
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Proof.

PUSH The easiest way to prove it is as follows. Observe that a morphism s : X → Y in W gives a

functor s : [1] → M : 0 7→ X, 1 7→ Y and the unique morphism 0 → 1 goes to s. There is

also a natural functor [1] → [1]iso, where [1]iso is the category with objects 0, 1 and a unique

non-identity isomorphism between them. Overall a morphism s ∈ W gives us a diagram of

categories

[1]
s
- M

[1]iso
?

One observes that the pushout M
∐
[1]

[1]iso is in fact the localisation M [s−1] of M with respect

to the set of maps {s}. Considering different s ∈ W gives us a diagram

∐
s∈W

[1]

∐
s
- M

∐
s∈W

[1]iso

?

The colimit of this diagram is seen to satisfy the universal property of a localisation.

ZAG We might do something more explicit. For X, Y ∈ M define ZZ(X, Y ) to be the set of all

zigzags of morphisms between X and Y of the form

X → T0 ← T1 · · · → Tn ← Y

Here the number of morphisms between X and Y can be any element of N (possibly 0). The

morphisms in the direction of Y are arbitrary, the morphisms in the direction of X must belong

to W . We also define a relation ∼ on ZZ(X, Y ), which is the minimal equivalence relation

containing the following elementary relations:

T1

u
- T2

v
- T3 ∼ T1

v ◦ u
- T3,

T1

s
- T2

�
s

T1 ∼ T1

idT1- T1,

T2
�
s

T1

s
- T2 ∼ T2

idT2- T2,

T
idT- T ∼ T,

24



where u, v ∈ Mor (M ) and s ∈ W , and in the last line T means the zigzag of zero length.

Define then Ob M [W −1] = Ob M and M [W −1](X, Y ) = ZZ(X, Y )/ . There is a natural

composition inherited from the composition in M , and also a functor M → M [W −1] which

sends a morphism f : X → Y to the class of a unit length zigzag given by f . The reader

verifies that this construction gives a localisation functor.

In both cases we cannot guarantee that the resulting category will be a U-category. Taking coproducts

requires to move to a higher universe, and the zigzag construction shows us that the set ZZ(X, Y )

may have cardinality equal to that of Ob M . �

4.3 Derived functors

Not all functors between localizers are homotopically meaningful.

Example 4.7. Take the category DGModZ, that is, the category of complexes of abelian groups.

Take a group Z/nZ and consider a functor

−⊗Z Z/nZ : DGModZ → DGModZ, A 7→ A⊗Z Z/nZ.

This functor does not take quasiisomorphisms to quasiisomorphisms. For example, a sequence of

group morphisms

0→ Z→ Z→ Z/nZ→ 0

when viewed as a complex has zero13 cohomology groups, and so it gives rise to a quasiisomorphism

from

...→ Z→ Z→ ...

to

...→ 0→ Z/nZ→ ...

But after tensoring the complexes with Z/nZ we get a map from

...→ Z/nZ→ Z/nZ→ ...

with zero differentials to

...→ 0→ Z/nZ→ ...

Since the differentials in the first complex are zero, one observes that cohomology groups are different

for these two complexes.

The example of functor above is however interesting and natural, so we might hope that a

good deal of functors leaves at least some information at homotopical level. Non-invertible natural

transformations allow us to make one step further in this direction.

13 Here the map Z→ Z is given by x 7→ nx.
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Remark 4.8. Let F : C → D and G,H : D → E be three functors and α : G → H be a natural

transformation. Then there is a natural transformation α ∗ F : G ◦ F → H ◦ F which is defined as

G ◦ F (X)
αF (X)→ H ◦ F (X).

This family of arrows is readily verified to be a natural transformation and provides us an example

of horizontal composition of natural transformations14.

We can dualize the situation and consider three functors F : D→ E and G,H : C→ D, and for

every α : G→ H we can define F ∗ α : F ◦G→ F ◦H.

Definition 4.9. Let (M ,W ) be a localiser, p : M → M [W −1] be a localisation functor and F :

M → D be a functor.

L A left derived functor of F is a pair (LF, α) consisting of a functor LF : M [W −1]→ D and a

natural transformation α : LF ◦ p→ F , which furthermore is universal in the following sense.

For every pair (G, β) of G : M [W −1] → D and β : G ◦ p → F there is a unique natural

transformation β̄ : G→ LF such that β = α ◦ (β̄ ∗ p):

LF ◦ p

G ◦ p
β

-

β̄ ∗ p
-

F

α

?

R A right derived functor of F is a pair (RF, α) consisting of a functor RF : M [W −1] → D

and a natural transformation α : F → RF ◦ p, which furthermore is universal in the following

sense. For every pair (G, β) of G : M [W −1]→ D and β : F → G ◦ p there is a unique natural

transformation β̄ : RF → G such that β = (β̄ ∗ p) ◦ α:

G ◦ p

F
α
-

β

-

RF ◦ p

β̄ ∗ p
6

ABS A left (right) derived functor (LF, α) (resp. (RF, α)) of F is called absolute if for any functor

H : D→ E the pair (H ◦LF,H ∗ α) (resp. (H ◦RF,H ∗ α)) is a left (right) derived functor of

H ◦ F .

Remark 4.10. It can be shown that the definition of localisation implies that the functor p∗ :

Fun(M [W −1],D) → Fun(M ,D) is fully faithful15. Thus it means that we could equivalently

14 this was an example of complsing idF and α.
15Its image consists of morphisms of localisers (M ,W ) → (D, IsoD). In the weakened version one makes the

replacement of image with essential image.
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specify a left derived functor of F as a functor LF : M → D, which takes W to isomorphisms, and

which is equipped with a natural transformation α : LF → F which has the universal property as

above. This is however slightly less natural for total derived functors:

Definition 4.11. Let (M ,WM ) and (N ,WN ) be a pair of localizers F : M → N be a functor. An

total left derived functor of F is a left derived functor of pN ◦ F , where pN : N → N [W −1
N ] is the

localization functor. Dually, an total right derived functor of F is a right derived functor of pN ◦ F .

Remark 4.12. The notion of absolute total left (right) derived functor is defined in a straightforward

manner.

We modify notation in this case so that an total left derived functor of F consists of a pair (LF, α)

where LF : M [W −1
M ]→ N [W −1

N ] and α : LF ◦ pM → pN ◦ F . We could picture it as follows:

M
F
- N

M [W −1
M ]

pM

? LF
-

==
==

==
==

==
==

α

⇒

N [W −1
N ]

pN

?

We shall often employ a short notation and write LF for an (total) left derived functor of F without

mentioning α explicitly.

There are various reasons why derived functors are useful. The formal one is the following:

Theorem 4.13 (Abstract adjunction theorem). Let (M ,WM ) and (N ,WN ) be a pair of local-

izers F : M
→← N : G be a pair of adjoint functors (F a G). Then

1. If F admits an absolute total left derived functor LF And G admits an absolute total right

derived functor RG then there is an adjunction LF a RG canonically induced from F a G.

2. If F admits an absolute total left derived functor LF and there is a left adjoint H of LF , then

absolute total right derived functor RG of G exists and it can be chosen equal to H.

Proof. For the first statement, see [4] (the proof is a lengthy calculation; also, the explicit choices

of unit and counit for the adjunction LF a RG are given there). For the second statement, see [5].

However, the proof is really [2] a simple manipulation with Kan extensions and ends and will be

included in future version. �

Thus we observe that (absolute) derived functors is a correct way to extend functors to localiza-

tions so that adjunctions are preserved. This fact lies in the basis of the next definition.

Let (M ,W ) be a localizer and (M I ,WI) be the localizer structure induced on Fun(I,M) for

a small category I as in Example 4.2. Then the functor ∆I induces a functor ∆̄I : M [W −1] →
M I [W −1

I ] (indeed, ∆̄I is both absolute left and right derived functor of ∆I .
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Definition 4.14. A homotopy colimit functor is a left adjoint of ∆̄I . Equivalently, it is a total left

derived functor of lim−→ : M I →M (if the latter exists). A homotopy limit functor is a right adjoint

of ∆̄I . Equivalently, it is a total right derived functor of lim←− : M I →M (if the latter exists).

We could picture this situation by the following diagram:

M

�
lim−→
∆I -

�
lim←−

M I

M [W −1]

pM

?
�

L lim−→
∆̄I -

�
R lim←−

M I [W −1
I ]

pM I

?

Example 4.15. The following example might be of some interest for a reader familiar with homo-

logical algebra. We shall reprove the existence of all functors in this example later in the course.

Take DGModR with W as in Example 4.3 (DG). Then for I = BG, where G is a (finite)

group we have Fun( BG,DGModR) = DGModR[G], that is, the category of complexes of left

R[G]-modules. Here the ring R[G] is the group R-algebra16 of G.

The functor ∆I : DGModR → DGModR[G] sends a complex of R-modules M• to the complex

of R[G]-modules with trivial action of G. We observe from the Example 3.29 that the limit functor

sends a complex of R[G]-modules N• to the complex of invariants (N•)G, and the colimit functor

sends it to the complex of coinvariants N•G.

An alternative way to express it is the following. There is a ring homomorphism R[G]→ R which

sends
∑

g∈G agg to
∑

g∈G ag. This homomorphism makes R in a R[G] bimodule, that is, both left

and right R[G] module such that the actions are multiplicatively independent17. We then observe

that, for a left R[G]-module N (or a complex of left R[G]-modules), we have NG = R ⊗R[G] N and

NG = ModR[G](R,N).

In this case, we arrive to the fact that, for N• ∈ DGModR[G], we have (in classical homological

algebra notation) R lim←−N
• = RHom(R,N•), which is also known as H∗(G,N•), the cohomology of

group G with coefficients in N•, and L lim−→N• = R⊗L
R[G] N

•, which is also known as H∗(G,N
•), the

homology of group G with coefficients in N•.

With that kind of formal introduction we are left with the following list of problems:

1. We were somewhat able to prove that localization exists, but what about derived functors?

16As a set, it consists of all R-linear combinations of elements from G. The multiplication is induced from that of
G.

17Another way of saying this is that R has the structure of left R[G] ⊗R R[G]op-module, where, for a ring A, Aop

denotes the ring with opposite multiplication.
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Under what consequences does a functor between categories with weak equivalences admit a

left or right derived functor?

2. If F and G a couple of functors between localisers, and if LF and LG are their total left derived

functors, the derived functor L(G◦F ) might not exist, but even if it does, the canonical natural

transformation LG◦LF → L(G◦F ) might not be an isomorphism. Under what circumstances

does it happen?

3. When do homotopy (co)limits exist for a localizer (M ,W )?

4. How to compute all this stuff?

It is now time to propose an answer to these questions.

5 Model Categories

5.1 Definition and examples

Definition 5.1. A closed model structure on a category M consists of three (not necessarily small)

sets of morphisms W, F ib and Cof (that is, all three are subsets of MorM), called respectively weak

equivalences, fibrations and cofibrations, such that the folliwing axioms are satisfied:

CM1 (3-for-2) If f : X → Y , g : Y → Z are morphisms in MorM and it is true that any 2 elements

of the set {f, g, g ◦ f} are in W, then {f, g, g ◦ f} ⊂W.

CM2 (Retracts) Given a commutative diagram

A
i1 - X

r1 - A

B

f

? i2 - Y

g

? r2 - B

f

?

in which r1 ◦ i1 = idA and r2 ◦ i2 = idB (in such case f is called a retract of g), if g ∈ W

(respectively g ∈ Fib, g ∈ Cof) then f ∈W (respectively f ∈ Fib, f ∈ Cof).

CM3 (Lifting) Given a commutative diagram

A - X

B

i

?
- Y

p

?
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Whenever i ∈ Cof , p ∈ Fib∩W (or i ∈ Cof∩W, p ∈ Fib), there exists a morphism h : B → X

such that the resulting diagram

A - X

B

i

?
-

h

-

Y

p

?

commutes.

CM4 (Factorization) Any morphism f : X → Y can be factored in two ways,

X
i
- Z

Z ′

i′

?

p′
- Y

p

?

f

-

such that i ∈ Cof ∩W, p ∈ Fib and i′ ∈ Cof , p′ ∈ Fib ∩W.

Morphisms from Cof ∩W are called trivial, or acyclic, cofibrations. Morphisms from Fib ∩W

are called trivial, or acyclic, fibrations.

Definition 5.2. A model category is a category M with a model structure W, F ib, Cof such that

CM0 M admits small limits and colimits.

In a model category M one has an initial object ∅ and a final object ∗. An object X in M is

called cofibrant if the morphism ∅ → X is a cofibration and is called fibrant if the morphism X → ∗
is a fibration.

Example 5.3.

TRIV Any category C can be given trivial model structure with W = Iso(C) and Fib = Cof = MorC.

TOP A Serre fibration is a map of topological spaces p : X → Y such that for every n ≥ 0 and every

commutative diagram

[0, 1]n−1 - X

[0, 1]n

i

?
- Y

p

?

there exists a map h : [0, 1]n → X such that the diagram obtained from the square above

by adding h commutes. Here [0, 1] is the standard interval in R and i : [0, 1]n−1 → [0, 1]n
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includes [0, 1]n−1 as one of the faces of [0, 1]n. Coverings and fibre bundles are examples of

Serre fibrations, and another example of such a map is the morphism p : Path(X)→ X ×X.

Here Path(X) is the space of triples (x, y, l), where x, y ∈ X and l : [0, 1] → X is a path18

in X. p then is the obvious projection. We might restrict ourselves to x × X ⊂ X × X and

obtain, by taking the limit of the diagaram

Path(X)

x×X ↪→ X ×X

p

?

the map e : SX → X. Here SX is the space of all maps l : [0, 1]→ X such that l(0) = x and

e(l) = l(1). This is also a Serre fibration.

There is a model structure on Top in which Fib is the set of all Serre fibrations and W is the

set of all weak homotopy equivalences. Cof in this model structure are not easy to describe.

Informally, they are retracts of inclusions X ↪→ Y such that Y is obtained from X by attaching

(perhaps infinite number of) cells (that is, disks Dn of any dimension). Trivial cofibrations,

however, are known to be inclusions X ↪→ Y which are strict deformation retracts.

Every object is fibrant in this model structure. Cofibrant objects could be called ’generalized

cell complexes’.

SSET The category of simplicial sets admits a very sophisticated model structure. First, define

simplicial subsets Λn
k ⊂ ∆n (here k ∈ {0, ..., n}) as follows. Take all non-degenerate simplices

of ∆n, and remove from this list id[n] : [n]→ [n] and ∂k : [n− 1]→ [n] (the latter is the unique

injective order-preserving map whose image does not contain k). Then consider the minimal

simplicial subset of ∆n containing the remaining non-degenerate simplices. Alternatively, take

the colimit in SSet of the category of elements of ∆n modulo id[n] and ∂k. Either way we

finish up with a simplicial set Λn
k with an (injective) map Λn

k → ∆n. From the construction,

we observe that the geometric realization of Λn
k is the boundary of n-simplex with kth face

removed.

A Kan fibration is a map of simplicial sets p : X → Y such that for any n ∈ N and k ∈ {0, ..., n}
and any commutative diagram

Λn
k

- X

∆n

i

?
- Y

p

?

(where i is the canonical inclusion) there exists a morphism h : ∆n → X such that the diagram

18We shall not dwell in details on the topology of Path(X), assuming this problem is treated in topology courses.
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obtained from the square above by adding h commutes. An example of Kan fibration is the

map Sing(T ) → ∗, where T is a topoligical space and ∗ is the final simplicial set. Indeed,

finding a lift19 ∆n → Sing(T ) in the diagram

Λn
k

- Sing(T )

∆n

i

?
- ∗
?

which is, by the way, the same as finding a lift ∆n → Sing(T ) in

Λn
k

- Sing(T )

∆n

i

?

is equivalent, by adjointness | − | a Sing, to finding a lift |∆n| → T in

|Λn
k | - T

|∆n|

i

?

But |Λn
k | ∼= Dn−1, |∆n| ∼= Dn and any topological space is obviously Serre-fibrant. We shall

discover other fibrant simplicial sets later in the course.

To obtain a model structure, one defines W as in Example 4.3 and also Cof to be all monomor-

phisms and Fib to be all Kan fibrations. All objects are cofibrant in this model structure. The

fibrant objects are called Kan complexes.

PROJ Let DGMod≤0
A be the category of complexes of A-modules such that for any N• ∈ DGMod≤0

A

we have N i = 0 for i > 0. There is a model structure on this category in which

– W are quasiisomorphisms,

– Cof are maps f : N• → M• such that f i : N i → M i is an injection whose cokernel is a

projective module,

– Fib are maps f : N• →M• such that for i < 0 f i : N i →M i is a surjection.

This model structure is called the projective model structure on DGMod≤0
A . All objects are

fibrant and cofibrant objects are precisely the complexes of projective A-modules bounded from

the right.

19That is, a diagonal map so that the resulting diagram commutes.
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INJ Let DGMod≥0
A be the category of complexes of A-modules such that for any N• ∈ DGMod≥0

A

we have N i = 0 for i < 0. There is a model structure on this category in which

– W are quasiisomorphisms,

– Cof are maps f : N• →M• such that for i > 0 f i : N i →M i is an injection,

– Fib are maps f : N• →M• such that for f i : N i →M i is a surjection whose kernel is an

injective module.

This model structure is called the injective model structure on DGMod≤0
A . All objects are

cofibrant and fibrant objects are precisely the complexes of injective A-modules bounded from

the left.

DG The category DGModA has two model structures, which are in a sense inherited from the

previous two examples. In the first one

– W are quasiisomorphisms,

– Cof are maps f : N• →M• such that f i : N i →M i is an injection and the cokernel of f

is a DG-projective complex.

– Fib are maps f : N• →M• such that for f i : N i →M i is a surjection.

We shall again call it the projective model structure. In the second one

– W are quasiisomorphisms,

– Cof are maps f : N• →M• such that for f i : N i →M i is an injection,

– Fib are maps f : N• → M• such that for f i : N i → M i is a surjection and the kernel of

f is a DG-injective complex.

This one is again to be called the injective model structure. We shall not explain here what ’DG-

projective’ and ’DG-injective’ means as we won’t need such explicit descriptions of (co)fibrations.

It is important to note here that in both model structures the choice of W is the same, so,

if we consider DGModA[W−1] for both model structures, we shall get equivalent categories.

However, different model structures are useful for different purposes. For instance the derived

tensor product functor will be seen to exist in projective model structure, and the derived Hom-

functor works well with injective model structure. In this sense, choosing model structure is

like choosing coordinates for computation. This analogy becomes even more drastic when one

considers homotopy (co)limits.

CAT Lastly, for the category of small categories Cat we have the following canonical model structure

in which

– W are equivalences of categories,
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– Fib are isofibrations, that is, functors F : C → D such that for any object X in C and

an isomorphism u : F (X) → Y in D there exists an isomorphism ũ : X → Ỹ in C with

F (ũ) = u,

– Cof are functors injective on the sets of objects.

Any object is fibrant and cofibrant in this model structure.

Let us elaborate a bit more on the final example.

Proposition 5.4 ([6]). The category Cat with W, F ib, Cof as above is a model category.

Proof. Let us verify all the steps.

CM0 The category Cat is complete (this is easy to see) and cocomplete (this is not so easy to see;

coequalizers are usually not calculated explicitly).

CM1 This property is evident for functors which are equivalences of categories.

CM2 Let

C
I1 - M

R1 - C

D

F

? I2 - N

G

? R2 - D

F

?

be a retract diagram of small categories and functors.

If G ∈W, choose a quasi-inverse G′ : N→M of G and consider the functor R1◦G′◦I2 : D→ C.

This will be a quasi-inverse of F .

For Fib this will follow from some general arguments to be outlined below. For Cof , the fact

that in the diagram above F ∈ Cof whenever G ∈ Cof is equivalent to the fact that in the

diagram

ObC
I1- ObM

R1- ObC

ObD

F

? I2 - ObN

G

? R2- ObD

F

?

’G : ObM → ObN is injective’ implies ’F : ObC → ObD is injective’. This can be checked

by a direct calculation.
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CM3 Consider a diagram

C
U
- M

D

F

? V
- N

G

?

of small categories and functors. We check that there exists a lift H : D → M whenever

F ∈ Cof ∩W, G ∈ Fib or F ∈ Cof,G ∈ Fib ∩W.

WCOF When F is a cofibration and a weak equivalence, we see that, in this case, C may be

identified with a full subcategory F (C) of D having the property that ObF (C) = F (ObC)

and that every object of D is isomorphic to an object of F (C). We may use this to see

that there exists a functor F ′ : D→ C with the list of properties

1. F ′ ◦ F = idC.

2. There is a natural isomorphism α : F ◦ F ′ ∼→ idD such that for every c ∈ C we have

αFc = idFc.

(we leave it to the reader to elaborate on the existense of such a functor F ′)

We now construct a lift explicitly. For every d ∈ D there is an isomorphism V αd :

V ◦ F ◦ F ′d ∼→ V d in N. But V ◦ F ◦ F ′ = G ◦ U ◦ F ′ so αd gives an isomorphism

G(U ◦ F ′d)
∼→ V d. But G ∈ Fib so, by the property of fibrations, there is a lift

βd : U ◦ F ′d ∼→ Hd.

Let us chose a lift βd for every d ∈ D.

If f : d→ d′ is a morphism in D, then we define Hf to be the composite

Hd
β−1
d- U ◦ F ′d

U ◦ F ′f
- U ◦ F ′d′

βd′ - Hd′.

It can be checked that this amount of data defines a functor H : D → M such that

everything commutes.

WFIB The fact that G is a fibration and a weak equivalence means that G is fully faithful and

surjective on objects. For every d ∈ D, consider V d ∈ N and its lift Hd ∈M (this exists

as G is surjective on objects). Next, as G is fully faithful,

M(Hd,Hd′) ∼= N(V d, V d′)← D(d, d′)

So the fully-faithfulness gives us a map D(d, d′)→ M(Hd,Hd′) which in total gives us a

functor H : D→M.
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CM4 We must factor a functor F : C→ D in two ways,

C
I

- E

E′

I ′

?

P ′
- D

P

?

F

-

such that I ∈ Cof , P ∈ Fib ∩W and I ′ ∈ Cof ∩W, P ′ ∈ Fib.

E Let us first factor F as P ◦ I. To do this, construct the following category E. Set

ObE = {(c, α, d)|c ∈ C, d ∈ D, α : Fc
∼→ d}.

Here α is an isomorphism between Fc and d. For two objects, (c, α, d) and (c′, α′, d′), we

set

E((c, α, d), (c′, α′, d′)) = C(c, c′).

There is a functor

I : C→ E, c 7→ (c, idFc, F c)

which is seen to be a cofibration and a weak equivalence, and also a functor

P : E→ D, (c, α, d) 7→ d

which is seen to be a fibration.

E’ Define E′ to be the category with

ObE′ = ObC tObD

and for c, c′ ∈ C and d, d′ ∈ D set

E′(c, c′) = C(c, c′); E′(c, d′) = D(Fc, d′),

E′(d, c′) = D(d, Fc′), E′(d, d′) = D(d, d′).

There is a functor

I ′ : C→ E′, c ∈ ObC 7→ c ∈ ObE′,

which is evidently a cofibration, and a functor

P ′ : E′ → D

which maps c ∈ ObC ⊂ ObE′ to Fc ∈ D and d ∈ ObD ⊂ ObE′ to d ∈ D. This functor
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is evidently a fibration and a weak equivalence. �

This example is a rare opprotunity to prove all the axioms by presenting explicit lifts and factor-

izations.

5.2 Lifting and retract argument

We turn to the original meaning of the word ’closed’.

Let C be a category with I ⊂ MorC.

Definition 5.5.

RLP The set of morphisms with right lifting property (RLP) with respect to I is denoted by r(I)

and consists of all morphisms p : X → Y in MorC such that for any i : A → B ∈ I and any

commutative diagram

A - X

B

i

?
- Y

p

?

there exists a lift, that is, a map h : B → X such that the resulting diagram

A - X

B

i

?
-

h

-

Y

p

?

commutes.

LLP The set of morphisms with left lifting property (LLP) with respect to I is denoted by l(I) and

consists of all morphisms p : X → Y in MorC such that for any i : A → B ∈ I and any

commutative diagram

X - A

Y

p

?
- B

i

?
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there exists a lift, that is, a map h : Y → A such that the resulting diagram

X - A

Y

p

?
-

h

-

B

i

?

commutes.

Example 5.6. Most fibrations we have seen in Example 5.3 arise as morphisms with right lifting

property with respect to some set of maps.

TOP In the category Top, Serre fibrations are elements of the set r(I), where I is the set of all face

inclusions [0, 1]n−1 → [0, 1]n for n ≥ 0.

SSET In the category SSet, Kan fibrations are elements of the set r(I), where I is the set of all horn

inclusions Λn
k → ∆n for n ≥ 0 and 0 ≤ k ≤ n.

CAT In the category Cat, isofibrations are elements of the set r(I), where I is the set consisting of

one element, the morphism

[0]
0→ [1]iso

(here [1]iso is the ’one-isomorphism’ category as in the proof of Proposition 4.6).

Proposition 5.7. For a set of morphisms I ⊂ MorC,

1. The set r(I) is stable under composition, pullbacks and retracts,

2. The set l(I) is stable under composition, pushouts and retracts.

Proof. We shall prove the case of r(I) (for l(I), the proof is dual).

• Let

T - Y

Z
?

- X
?

Be a pullback diagram, that is, T ∼= lim←−(Z → X ← Y ). For i : A → B in I, consider a

(commutative) diagram

A - T

B

i
?

- Z
?
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In total, this gives us

A - T - Y

B

i
?

- Z
?

- X
?

There is a lift

A - Y

B

i
?

-

h
-

X
?

As B → X is a composite morphism B → Z → X, there is a morphism B → T given by the

universal property of T . This is seen to be a desired lift.

• Let

Z
i1- X

r1- Z

T

f
? i2- Y

g
? r2- T

f
?

be a retract diagram so that g ∈ r(I). A lifting problem for f , that is, finding a lift in a

diagram

A - Z

B

i
?

- T

f
?

can be done by first constructing the diagram

A - Z
i1- X

B

i
?

- T

f
? i2- Y

g
?

and finding a lift h : B → X. Then the morphism r1 ◦ h : B → Z can be checked to be the

required lift.

• The proof for composition and the (dual) proof for l(I) is left to the reader. �

One final property is the retract argument :

Proposition 5.8. Let I ⊂ MorC. If an element f : X → Y of the set I can be factored as f = p ◦ i
where p ∈ r(I) (respectively, i ∈ l(I)) then f is a retract of i (respecitvely f is a retract of p).
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Proof. Let us prove the first part. Since we can factor f = p ◦ i, there is a diagram

X
i
- Z

Y

f
? idY- Y

p
?

Since p ∈ r(I) and f ∈ I then there is a lift h : Y → Z such that p ◦ h = idY and h ◦ f = i = i ◦ idX .

This lift allows us to draw a diagram

X
idX- X

idX- X

Y

f
? h

- Z

i
? p

- Y

f
?

which shows that f is a retract of i. �

These two propositions allow us to deduce the following:

Theorem 5.9. In a model category M with fibrations Fib, cofibrations Cof and weak equivalences

W,

1. Cof = l(Fib ∩W), Cof ∩W = l(Fib).

2. Fib = l(Cof ∩W), Fib ∩W = l(Cof).

3. Cof and Cof ∩W are stable under composition, pushouts and retracts

4. Fib and Fib ∩W are stable under composition, pullbacks and retracts.

Proof. The inclusion Cof ⊂ l(Fib ∩ W) is evident from the definition, the inverse inclusion is

obtained by CM4, CM3 and Proposition 5.8. This is the way to prove 1. and 2.; the proof of 3.

and 4. is done by using Proposition 6.1.2. �

In fact, we see that the axiom CM2 is a bit overdetermined. We do not need to require the

stability under retracts for Fib and Cof as it automatically follows from the theorem we just proved.

5.3 Homotopy in a model category

Definition 5.10. Let M be a model category. Its homotopy category HoM is the localisation of M

with respect to weak equivalences W.

The purpose of this section is to provide a description of HoM which exists without moving to

a higher universe and is much more tractable. This is done via the notion of homotopy in a model

category.

Fix a model category M with fibrations Fib, cofibrations Cof and weak equivalences W.
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Definition 5.11.

• For X ∈M, a cylinder object of X is the factorization of the codiagonal morphism,

X
∐

X
∇
- X

C(X)

i
? p

-

such that p is a weak equivalence. We shall denote this cylinder object by C(X) omitting p

and i.

A cylinder object is called good if i ∈ Cof . A cylinder object is called very good if in addition

p ∈ FibW.

• For Y ∈M, a path object of Y is the factorization of the diagonal morphism,

Y
∆
- Y × Y

P (Y )

i
? p

-

such that i is a weak equivalence. We shall denote this path object by P (Y ) omitting p and i.

A path object is called good if p ∈ Fib. A path object is called very good if in addition

i ∈ Cof ∩W.

Remark 5.12. By CM4, in a model category every object X has both a very good cylinder and a

very good path objects. We also introduce some notation.

Let X, i and p be as in the definition of C(X) above. There are two morphisms in0, in1 : X →
X
∐
X given by the structure of coproduct. We denote by i0 and i1 the compositions i ◦ in0 and

i ◦ in1. This allows us to write i = i0 t i1.

Dually, let Y, p and i be as in the definition of P (Y ) above there are two morphisms pr0, pr1 :

Y × Y → Y given by the structure of product. We denote by p0 and p1 the compositions p ◦ pr0 and

p ◦ pr1. This allows us to write p = (p0, p1).

Definition 5.13. Let f, g : X → Y be two morphisms in M.

LH f and g are left homotopic (in this case we write f
l∼ g) if there is a cylinder object C(X) of

X and a morphism H : C(X)→ Y such that H ◦ i0 = f , H ◦ i1 = g (in this case, H is called
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a left homotopy from f to g):

X

C(X)

i0

? H
- Y

f

-

X

i1

6

g

-

RH f and g are right homotopic (in this case we write f
r∼ g) if there is a cylinder object P (Y ) of

Y and a morphism H : X → P (Y ) such that p) ◦H = f , p1 ◦H = g (in this case, H is called

a right homotopy from f to g):

Y

X
H
-

f

-

P (Y )

p0

6

Y

p1

?

g
-

H f and g are homotopic (in this case we write f ∼ g if they are both left and right homotopic.

HEQ f is a homotopy equivalence if there exists a morphism f ′ : Y → X such that f ◦ f ′ ∼ idY and

f ′ ◦ f ∼ idX .

Definition 5.14. For X, Y ∈M, denote by

• πl(X, Y ) (the set of all left homotopy classes) to be the quotient of M(X, Y ) by the equiv-

alence relation which is minimal among all equivalence relations on M(X, Y ) containing the

’elementary relations’ of the form f
l∼ g.

• πr(X, Y ) (the set of all right homotopy classes) to be the quotient of M(X, Y ) by the equiv-

alence relation which is minimal among all equivalence relations on M(X, Y ) containing the

’elementary relations’ of the form f
r∼ g.

Remark 5.15. Aside from the notion of (very) good cylinder and path objects, all the definitions

outlined could be made only with finite (co)products and W without any mention of Fib and Cof .

However, the abstract notion of homotopy gives some meaningful results only for a model category.
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We now outline the main properties of left and right homotopy which allow us to present a

meaningful description of HoM. The facts are multiple and most proofs are diagram chase. We

present them in a unified proposition for easier reference, and write all the results for the case of a

left homotopy (the case of the right homotopy follows by reversing arrows and replacing ’fibration’

with ’cofibration’ and vice versa).

Proposition 5.16. Let20 f, g ∈M(X, Y ).

1. f
l∼ g iff there exists a good cylinder object C(X) and a left homotopy H : C(X) → Y . If, in

addition, Y is fibrant, then C(X) above can be chosen to be very good.

2. If X is cofibrant and C(X) is a good cylinder object of X then i0, i1 : X → C(X) are elements

of Cof ∩W.

3. If X is cofibrant then
l∼ is an equivalence relation on M(X, Y ).

4. If X is cofibrant then f
l∼ g implies f

r∼ g.

5. If p : E → B is a fibration and a weak equivalence, and A ∈M is cofibrant, then

p∗ : πl(A,E)→ πl(A,B), [f ] 7→ [p ◦ f ]

is an isomorphism.

6. If Y is fibrant then for any Z ∈M the composition

M(Z,X)×M(X, Y )→M(Z, Y )

induces a composition on the left homotopy classes:

πl(Z,X)× πl(X, Y )→ πl(Z, Y ).

7. (Whitehead theorem) If X and Y are both fibrant and cofibrant then f ∈W iff f is a homotopy

equivalence.

Proof. Most proofs are quite elementary.

1. Let C(X) be a cylinder object and H : C(X) → Y a left homotopy from f to g. Factor

i : X
∐
X → C(X) as

X
∐

X
i′→ C ′(X)

p′→ C(X)

so that i′ ∈ Cof (and p′ ∈ Fib ∩W). We then see that C ′(X) is a good cylinder object for X

and H ◦ p′ : C ′(X)→ Y is a left homotopy from f to g.

20In this proposition we use the notation of Definition 5.11.
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From now on, let C(X) be a good cylinder object (so that i is a cofibration). If Y is fibrant,

factor p : C(X)→ X as

C(X)
i′′→ C ′′(X)

p′′→ X

so that i′′ ∈ Cof and p′′ ∈ Fib ∩W. This implies that C ′′(X) is a very good cylinder object

for X. Since p = p′′ ◦ i′′, p ∈W and p′′ ∈W, CM1 implies that i′′ ∈ Cof ∩W. We then get a

diagram

C(X)
H
- Y

C ′′(X)

i′′
?

and, since Y is fibrant and i′′ is a cofibration and a weak equivalence, we find a lift H ′′ :

C ′′(X)→ Y . It is easily checked that this morphism is a left homotopy from f to g.

2. Consider the pushout diagram

∅ - X

X
?

in1

- X
∐

X

in0
?

As ∅ → X is a cofibration and Cof is stable under pushout, in0 and in1 are cofibrations. As, for

a good cylinder object, i0 = i ◦ in0 and in1 are cofibrations. In addition, p ◦ in0 = p ◦ in1 = idX

and21 p, idX ∈W so, by CM1, i0 and i1 are cofibrations and weak equivalences.

3. The relation
l∼ is seen to be reflexive and symmetric. To check the transitivity, let f, g, h :

X → Y . Chose two good cylinder objects

X
∐

X
i0ti1−→ C(X)

p−→ X, X
∐

X
i′0ti′1−→ C ′(X)

p′−→ X

and two left homotopies: H : C(X)→ Y from f to g and H ′ : C ′(X)→ Y from g to h. Then

consider the diagram

X

X
i1- C(X)

i0
?

X
i′1- C ′(X)

i′0
?

21It is easy to see that for every T ∈M the morphism idT is in Fib ∩ Cof ∩W as it has both right and left lifting
property with respect to any subset of MorM.
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and take its colimit. We then get a diagram

X

X
i1- C(X)

i0
?

X
i′1- C ′(X)

i′0
? b

- C ′′(X)

a
?

We want to show that C ′′(X) is a cylinder object for X so that there is a left homotopy

H ′′ : C ′′(X)→ Y from f → h.

There are inclusion morphisms a ◦ i0 and b ◦ i′1 from X → C ′′(X). This gives us a morphism

X
∐
X → C ′′(X). Moreover, one can see that the universal property of a colimit gives us a

map p′′ : C ′′(X)→ X such that p′′ ◦ a = p and p′′ ◦ b = p′.

But a is a pushout of i1 which is an element of Cof ∩W by (2) of this proposition. It implies

that a ∈ Cof ∩W. As p ∈W, by CM1 we have p′′ ∈W.

Lastly, the universal property of colimit implies that there is a morphism H ′′ : C ′′(X) → Y

such that H ′′ ◦ a = H, H ′′ ◦ b = H ′. This is checked to be the desired left homotopy from f to

h.

4. Let

X
∐

X
i0ti1−→ C(X)

p−→ X

be a good cylinder object and H : C(X)→ Y be a left homotopy from f to g. Let

Y
i−→ P (Y )

(p0,p1)−→ Y × Y

be a good path object for Y . Consider a diagram

X
i ◦ f

- P (Y )

C(X)

i0

? (f ◦ p,H)
- Y × Y

(p0, p1)

?

As, by (2) of this Proposition, i0 ∈ Cof∩W and (p0, p1) ∈ Fib, there is a lift G : C(X)→ P (Y ).

Then G ◦ i1 is the desired right homotopy from f to g.

5. For any f : A→ B we have a diagram

∅ - E

A
? f

- B

p
?
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As A is cofibrant there is a lift g : A → E, p ◦ g = f . This proves that p∗ is surjective. If

g, g′ : A → E are two morphisms such that p ◦ g l∼ p ◦ g′, then choose a good cylinder object

C(A) and left homotopy H : C(A)→ B. We then have a diagram

A
∐

A
g t g′

- E

C(A)
? H

- B

p
?

The left map is a cofibration so we can find a lift G : C(A)→ E. This is a left homotopy from

g to g′.

6. We need to check that the composition map

M(Z,X)×M(X, Y )→M(Z, Y )

respects the elementary relation
l∼ between morphisms. It is sufficient to see that

• If f, g : X → Y and k : Z → X, then f
l∼ g implies f ◦ k l∼ g ◦ k.

• If h, k : Z → X and f : X → Y then h
l∼ k implies f ◦ h l∼ f ◦ k.

Then for any f, g : X → Y and h, k : Z → X we have f
l∼ g and h

l∼ k implies

f ◦ h l∼ g ◦ h l∼ g ◦ k.

The second assertion is fairly evident. If H : C(Z) → X is a left homotopy from h to k then

f ◦H : C(Z)→ Y is a left homotopy from f ◦ h to f ◦ k.

To prove the first assertion, choose (by (1) of this proposition) a very good cylinder object

C(X) and a left homotopy H : C(X) → Y from f → g. Choose also a good cylinder object

C(Z) for Z. Then we have a diagram

Z
∐

Z
k t k
- X

∐
X - C(X)

C(Z)
?

- Z
k
- X
?

which commutes. The map on the left is in Cof as C(Z) is good, the map on the right is in

Fib ∩W as C(X) is very good, thus we can find a lift L : C(Z)→ C(X). H ◦ L is then a left

homotopy from f ◦ k to g ◦ k.

7. Well be here a bit later (I got tired typing all this :-( ). �
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Corollary 5.17. There is a diagram of categories

πMc πMf

πMcf

⊂

-
�

⊃

where

1. πMc is the category with Ob πMc be the set of cofibrant objects of M and πMc(X, Y ) =

πr(X, Y ).

2. πMf is the category with Ob πMf be the set of fibrant objects of M and πMf (X, Y ) = πl(X, Y ).

3. πMcf is the category with ObπMcf be the set of fibrant and cofibrant objects of M and

πMcf (X, Y ) = πr(X, Y ) = πl(X, Y ) = π(X, Y ).

4. The functors πMcf ↪→ πMc and πMcf ↪→ πMf are the incusion functors.

Proof. πMf is a category as we can compose left homotopy classes between fibrant objects by

Proposition 5.16 (6) and the identity morphisms are chosen to be the classes [idX ] ∈ πl(X,X). The

dual argument proves that fro πMc. �

5.4 Localization and derived functors

Let M be a model category with W, Fib and Cof .

Theorem 5.18. The homotopy category HoM of M exists (without going to a higher universe). Its

set of objects can be chosen to be equal to ObM, and there is an equivalence between HoM and πMcf .

Proof. For every object X of M choose a factorization

∅ −→ QX −→ X

of the unique map ∅ → X in such a way that QX is cofibrant and γX : QX → X is a trivial

fibration. Moreover, for every cofibrant X set γX to be equal to idX . Also choose, for every Y ∈M,

a factorization

Y −→ RY −→ ∗

of the unique map Y → ∗ in such a way that RY is fibrant and iY : Y → RY is a trivial cofibration.

Moreover, for every fibrant Y set iY to be equal to idY .

For every morphism f : X → Y we have a diagram
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QY

QX - X
f
- Y
?

By CM3 there is a lift Q(f) : QX → QY . Moreover, two such lifts are left homotopic by

Proposition 5.16 (5). This implies that Q(g ◦f)
l∼ Q(g)◦Q(f) and Q(idX)

l∼ idQX . Proposition 5.16

(4) left homotopy on cofibrant objects implies right homotopy, so we defined a functor Q : M→ πMc.

In the dual way, the assignment X 7→ RX defines a functor R : M→ πMf .

Let QX,QY be as above and iQX : QX → RQX and iQY : QY → RQY are trivial cofibrations

chosen for every object of M (by the procedure described above). If f, g : QX → QY are two

right homotopic maps, the dual of Proposition 5.16 (6) implies that iQY ◦ f and IQX ◦ g are right

homotopic. We then observe that, after we extend f and g to Rf,Rg : RQX → RQY , the dual of

Proposition 5.16 (5) implies that Rf and Rg are (right) homotopic as well. Thus the assignment

X 7→ RX defines a functor R : πMc → πMcf . This in total gives us a functor RQ : M→ πMcf .

We define HoM as follows. Ob HoM = ObM. HoM(X, Y ) = π(RQ(X), RQ(Y )). We denote

by p : M → HoM the functor which is identity on the objects and is given on morphisms by RQ.

By Proposition 5.16 (7), this functor takes W to isomorphisms. The only remark to be made here is

that if f : X → Y is in W then a lift Qf and an extension Rf are weak equivalences due to CM1.

We now need to check that any functor F : M → D taking W to IsoD factors through HoM in

a unique way. That is, we construct F̄ : HoM→ D such that F̄ ◦ p = F . On objects, F̄ is clear to

define.

On morphisms, first note that F identifies (left or right) homotopic maps. For example, if

f, g : X → Y are left homotopic, choose a homotopy H : C(X) → Y . The map q : C(X) → X

is a weak equivalence, so F (q) is an isomorphism. As the inclusions i0, i1 : X → C(X) satisfy

q ◦ i0 = q ◦ i1, we obtain F (i0) = F (i1). This implies that F (f) = F (H ◦ i0) = F (H ◦ i1) = F (g).

The proof for right homotopy is dual.

Next, any element [f ] of HoM(X, Y ) can be represented by a morphism f̃ : RQX → RQY .

There is a diagram

RQX
f̃

- RQY

QX

6

QY

6

X
?

Y
?
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where the column maps are weak equivalences, so F takes them to isomorphisms. We then can define

F̄ ([f ]) as the composite

F (X)
∼←− F (QX)

∼−→ F (RQX)
F (f̃)−→ F (RQY )

∼←− F (QY )
∼−→ F (Y ).

As F identifies homotopic maps, this is independent of the choice of f̃ in [f ]. All this leads us to

observation that F̄ is a well defined functor. We also see that F̄ ◦ p = F by construction22. �

Corollary 5.19. If p : M → HoM is a localization functor and f : X → Y is a morphism in M

such that p(f) is an isomorphism, then f is a weak equivalence. That is, M is saturated.

Proof. This follows from the previous Theorem and Proposition 5.16 (7). �

We now turn to derived functors.

Theorem 5.20. Let F : M → D be a functor which takes weak equivalences between cofibrant

objects to isomorphisms. Then absolute left derived functor LF of F exists. Dually, if F takes weak

equivalences between fibrant objects to isomorphisms, then the right derived functor RF of F exists.

Proof. We first note that if Y is cofibrant and

Y
i
- P (Y )

(p0, p1)
- Y × Y

is a very good path object then, as i is a cofibration and a weak equivalence, we observe that F (i)

is an isomorphism as P (Y ) is also cofibrant in this case. It allows us to use the same argument as

in the previous proof to show that if f and g are right homotopic maps between cofibrant X and Y ,

then F (f) = F (g).

Consequently, F induces a functor F π : πMc → D. We can compose the functor Q : M → πMc

(which was constructed in the proof of the previous theorem) with F π and obtain a functor F π ◦Q
which takes W to isomorphisms (remember that Q lifts weak equivalences to weak equivalences

between cofibrant objects). Thus there is a functor LF : HoM→ D such that LF ◦ p = F π ◦Q.

For every object X we have a morphism γX : QX → X which is an element of Fib ∩W and is

identity whenever X is cofibrant. We can apply F to γX . As F π ◦ Q(X) equals F (QX), we obtain

a morphism F (γX) : LF ◦ p(X) → F (X). Thus we define αX to be F (γX). It is checked to be a

natural transformation; moreover, αQX is seen to be the identity map due to the choice of γX for

cofibrant objects.

22The reader might want to explicitly explain how p constructs a class in π(RQX,RQY ) out of a morphism in
M(X,Y ) to see this work.
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Given a natural transformation β : G ◦ p → F we need to show that there is unique universal

β̄ : G→ LF . If such a β̄ exists, then we can draw the following commutative diagram23

G(X)
β̄X - LF (X)

αX = F (γX)
- F (X)

G(QX)

G ◦ p(γX)

6

β̄QX - LF (QX)

LF ◦ p(γX) = idF (QX)

6

αQX = idF (QX)- F (QX)

F (γX)

6

As γX is a weak equivalence, G ◦ p(γX) admits an inverse. We thus see that βX must be equal

G(X) LF (X)

G(QX)

(G ◦ p(γX))−1

? βQX - LF (QX)

LF ◦ p(γX) = idF (QX)

6

but, as αQX : LF (QX) → F (QX) is the identity, β̄QX is the same morphism as βQX : G(QX) →
F (QX) = LF (QX). In other words, the map β̄ is uniquely defined on cofibrant objects by β, and is

uniquely extended to non-cofibrant objects by the diagram above.

The fact that LF is absolute is checked easily as we have presented an explicit construction of a

left derived functor for F , and for any G : D→ E the functor G ◦ F satisfies the assumption of the

theorem. �

Example 5.21. For a (commutative, for simplicity) ring A consider the category DGMod≤0
A with

projective model structure. For every module M ∈ModA there is a functor

−⊗AM : DGMod≤0
A → DGMod≤0

A

which takes a complex

...→ N i → N i+1 → ...

to

...→ N i ⊗AM → N i+1 ⊗AM → ...

This functor does not, in general, take quasiisomorphisms to quasiisomorphisms, but this property

23We use the fact that p : M→ HoM is identity on the objects.
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is fulfilled when this functor is restricted to complexes of projective modules. This basically follows

from the fact that every short exact sequence of projective modules

0→ P1 → P2 → P3 → 0

is split, P2
∼= P1 + P3.

Now, every cofibrant object of DGMod≤0
A is a complex of projective modules, so −⊗AM has a

left derived functor

−⊗L
AM : Ho (DGMod≤0

A )→ Ho (DGMod≤0
A ).

In fact, there is a bit more to tell about this example. In classical notation, Ho (DGMod≤0
A ) is

denoted as D−(A) and is called the right-bounded derived category of the ring A. We have proved that

this category is equivalent to the category of fibrant-cofibrant objects of DGMod≤0
A with homotopy

classes as maps.

Let M• be a complex. Define C(M•)• to be the complex with

C(M•)i = M i ⊕M i+1 ⊕M i

with differential

di : (x, a, y) 7→ (dix+ a,−di+1a, diy + a).

There are two obvious maps

M• ⊕M• → C(M•)•, (x, y) 7→ (x, 0, y)

and

C(M•)• →M•, (x, a, y) 7→ x+ y

(which factor the codiagonal) and the latter one is checked to be a quasiisomorphism. Thus we see

that C(M•)• is a cylinder object for M•. Moreover, one can explicitly check that left homotopy

corresponds to the notion of chain homotopy from homological algebra. Thus we obtained the well-

known result that D−(A) is equivalent to the category K−(Proj−A), the category of (right-bounded)

complexes of projective modules with morphisms chain maps modulo chain homotopies.

6 Examples

6.1 Cofibrantly generated model categories

6.1.1 Small, or finitely presented, objects

Let C be a category.

Definition 6.1. A partially ordered set I with order relation ≤ is called directed if for any two i, j

in I there is an element k ∈ I such that i ≤ k, j ≤ k.
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That is, if we consider I as a category with at most one morphism between two objects, the

condition above says that for any two objects i and i there always exist two morphisms fik : i → k

and fjk : j → k with common codomain k.

Definition 6.2. A directed colimit is a colimit of a functor F : I → C, where I is a directed poset

(viewed as a category). Such functor is called a directed diagram in C.

Example 6.3. In Set, if F : I → Set is a directed diagram, we can construct its colimit in the

following way. Take
∐

i∈Ob I F (i) and consider the following relation: x ∈ F (i) ∼ y ∈ F (j) if and

only if there is k ∈ I, fik : i → k and fjk : j → k such that F (fik)(x) = F (fjk)(y). This is an

equivalence relation. One can check now that lim−→F can be identified with
∐

i∈Ob I F (i)/ ∼.

This construction applies to many categories structured over sets, e.g. modules and rings, and can

be used to show that the forgetful functor from these categories to Set preserves directed colimits.

Example 6.4. Let S be a set. Then there is a poset P (S) of all subsets of S ordered by inclusion.

It is seen to be directed, as the union of two subsets is a subset. This poset has a terminal object,

so colimits over it are uninteresting. But let S be infinite and consider the poset P (S)fin of all finite

subsets, ordered by inclusion, which is also directed.

Now, there is a ’canonical’ diagram P (S)fin → Set, sending a subset x ⊂ S to x. The reader can

check that the colimit over this diagram is S. This fact can be summarised as follows: every set if a

directed colimit of finite sets.

A similar argument applies to other categories structured over Set. For example, every module

over a ring A is a directed colimit of finitely presented modules (that is, modules M such that there

exists an exact sequence

Am → An →M → 0

with n,m ∈ N).

Thus we see that directed colimits correspond to ’unions of subobjects’. In the example above,

however, these subobjects were finite, or small, in some sense. We are now going to formalize this.

Definition 6.5. An object X of C is called finitely presented if, for any directed diagram F : I → C

(such that lim−→F exists), the canonical morphism

lim−→C(X,F (−))→ C(X, lim−→F )

is an isomorphism. Here C(X,F (−)) is the functor from i to Set, i 7→ C(X,F (i)).

Remark 6.6. The set lim−→C(X,F (−)) is, as we have seen in Example 6.3, a quotient of
∐

i∈I C(X,F (i)).

One can consequently check the following: the canonical morphism

lim−→C(X,F (−))→ C(X, lim−→F )
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is an isomorphism if and only if any morphism f : X → lim−→F factors as

F (i)

X
f

-

f̄ -

lim−→F

-

for some i ∈ I (here F (i)→ lim−→F is the canonical morphism).

Example 6.7. The remark above allows one to deduce the following.

SET X ∈ Set is finitely presented iff X is finite set.

SSET X ∈ SSet is finitely presented iff X([n]) is finite for every [n] ∈ ∆.

MOD M ∈ModA is finitely presented iff M is finitely presented in the sense of Example 6.4.

DG M• ∈ DGModA is finitely presented iff every M i is finitely presented and M i = 0 for almost

all i ∈ Z.

TOP For Top, the situation with finitely presented objects is subtle. There is a theorem, which

says that a finite CW-complex is finitely presented with respect to a certain class of directed

colimits: given a sequence of inclusions

X0 → X1 → ...→ Xn → ...

such that, for every i ≥ 0, every inclusion Xi → Xi+1 makes (Xi+1, Xi) in a relative CW-pair,

any map from a finite CW-complex A to lim−→Xi factors through Xk for some k.

CAT A category D is finitely presented iff the sets ObD and MorD are finite.

6.1.2 Saturated classes of maps and the small object argument

Another story of this section concerns sets of the form l(I) for some set of maps I ⊂ MorC of a

category C.

We have seen that fibrations in a model category M often form a set r(J) for some small set

J ⊂ MorM. Cofibrations then are determined as Cof = l(Fib ∩W), and trivial cofibrations are

determined as Cof ∩W = l(Fib) = l(r(J)). It turns out that in many examples trivial fibrations

also satisfy Fib ∩W = r(I) for some small I ⊂ MorM. Consequently, Cof = l(r(I)).

Example 6.8. One can prove the following facts.

TOP In Top, it can be checked that, in the notation as above, I is the set of all maps Sn−1 → Dn

for n ≥ 0 (S−1 = ∅).

SSET In SSet, I is the set of all inclusions ∂∆n → ∆n for n ≥ 0.
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DG In DGModA, I is the set of all maps Sn+1 → Dn, where Sn is the complex with Sin = A if

i = n and 0 otherwise, and Dn is the complex with Di
n = A when i = n or n + 1 and zero

otherwise (the differential Dn
n → Dn+1

n is the identity map).

CAT In Cat, consider the subcategory ∂[1] of [1] which does not contain the morphism 0→ 1. Also

consider the category P = [1]
∐

∂[1][1] which is easily seen to be a category with objects 0, 1 and

two distinct morphisms 0 → 1 (the ’parallel-arrow’ category). There are evindent injections

u : ∅ → [0], v : ∂[1] → [1], and a projection w : P → [1] (v and w are identities on the sets of

objects). Then one can show that I = {u, v, w}.

Let us delve a bit more into the structure of l(r(I)).

Definition 6.9. A set of morphisms S ⊂ MorC of a cocomplete category C is called saturated24 if

and only if the following properties hold.

1. S is closed under pushouts of coproducts: given a set L and, for any l ∈ L, a morphism

fl : Cl → Dl in S, for X ∈ C and any pushout diagram∐
l∈L

Cl - X

∐
l∈L

Dl

∐
l∈L fl

?

- Y

g

?

the induced morphism g : X → Y is in S.

2. S is closed under finite and countable compositions. The latter means that, given a diagram25

X : N → C such that, for any i ∈ N, the map X(i) → X(i + 1) belongs to S, we always have

that the induced map X(0)→ lim−→X belongs to S.

3. S is closed under retracts (see Definition 5.1).

Proposition 6.10. For any I ⊂ MorC, l(r(I)) is saturated.

Proof. Half of things have been checked back in Proposition . We only note that a coproduct of

fl : Cl → Dl ∈ l(r(I)) is again in l(r(I)): just choose a lift separately for each fl. The stability under

countable compositions happens for the same reason: lifts can be chosen, in this case, inductively. �

One can see that an intersection of a collection of saturated sets of morphisms is again saturated;

consequently, for I ⊂ MorC we can talk about I, the minimal saturated set of morphisms containing

I.

When every morphism f : C → D in I has finitely presented domain C, interesting things start

to occur.
24We are ignoring in this section the cases of α-saturation, where α is a regular cardinal, and restricting ourselves

to the case of α = ω, the first infinite cardinal.
25We view the totally ordered set N here as a category.
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Theorem 6.11 (The small object argument). Let C be a cocomplete category with I ⊂ MorC

such that for every C → D ∈ I, the object C is finitely presented. Then there exists a functor26

T : C[1] → C[2]

which sends a morphism f : X → Y to a 2-simplex

Z

X
f

-

i
-

Y

p
-

where p ∈ r(I) and i ∈ I.

Proof. Let f : X → Y be a morphism in C. We construct a functor Z• : N→ C such that Z0 = X,

and a morphism Z• → ∆NY , where ∆NY is the constant functor N → C with value Y . This is the

same as a morphism p : lim−→Z• → Y . We then factor f as

lim−→Z•

X
f

-

i -

Y

p
-

where i : X = Z0 → lim−→Z• is the natural inclusion. We then show that i and p have desired

properties.

Proceed by induction. Assume that Zk and maps between them have been defined for k ≤ n.

also assume that the maps Zk → Y have been constructed for k ≤ n so that triangles

Y

Zk -

-

Zk+1

�

commute (the assumption is saitsfied for n = 0). We now have to construct Zn+1 and two maps

Zn → Zn+1, Zn+1 → Y .

Consider a commutative diagram

C - Zn

D
?

- Y
?

for C → D in I and Zn → Y is the map from the inductive assumption. Let Sn denote the set of all

such commutative diagrams. We observe that there is a functor from (discrete) category Sn to C[1],

26We remind the reader that for two categories A and B, BA denotes the category Fun(A,B).
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mapping the diagram

C - Zn

D
?

- Y
?

to C → D. A colimit over this diagram is a coproduct27

∐
Sn

C →
∐
Sn

D

Moreover, as every map in this coproduct was supplied with a morphism in C[1] to Zn → Y , we

finally get a commutative diagram ∐
Sn

C - Zn

∐
Sn

D

?

- Y
?

We now define Zn+1 to be the colimit of ∐
Sn

C - Zn

∐
Sn

D

?

The universal property of colimit tells us that there is a map Zn+1 → Y such that∐
Sn

C - Zn

∐
Sn

D

?

- Zn+1

?
- Y

-

commutes. The choices of maps Zn → Zn+1 and Zn+1 → Y are evident from this diagram.

The class I is saturated. By construction we observe that every Zk → Zk+1 belongs to I, thus

i : X = Z0 → lim−→Z• belongs to I.

It remains to show that p ∈ r(I). Let

C - lim−→Z•

D

α
?

- Y

p
?

27This can be a coproduct over a huge set even if the original set I is finite.
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be a commutative diagram with α : C → D in I. As C is finitely presented, the morphism C → lim−→Z•

in this diagram factors through Zn for some n. Thus we are left with a commutative diagram

C - lim−→Zn

D

α
?

- Y
?

But this diagram is an element x of Sn and consequently we can draw the following diagram

C -
∐
Sn

C - Zn

D

α

?
-
∐
Sn

D

?

- Zn+1

?

Here the left square maps α to its summand in the coproduct as dictated by x. The composite of

the down row gives us a map D → Zn+1. Composing with the canonical Zn+1 → lim−→Z•, we obtain

a map D → lim−→Z•, which is checked to be the required lift. �

Corollary 6.12. In the conditions of the theorem above, I = l(r(I)).

Proof. It is clear that I ⊂ l(r(I)). For the converse, suppose that f ∈ l(r(I)). Factor f as f = p◦ i,
where i ∈ I and p ∈ r(I). The retract argument (Proposition 5.8) then shows that f is a retract of

i, and so f ∈ I.

Remark 6.13. We observe that I = l(r(I)) consists of morphisms which are retracts of countable

compositions of sequences

X0 → X1 → X2 → ...

such that, for i ≥ 0, there are pushout squares∐
Si

C - Zi

∐
Si

D

?

- Zi+1

?

for some set Si. We may denote the set of all such countable compositions as cell(I). Thus l(r(I))

consists of retracts of elements of cell(I).
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6.1.3 Cofibrantly generated model categories

The results above suggest that, if, in a model category M we can choose sets I and J of cofibrations

and trivial cofibrations, then, if domains of arrows in I and J are finitely presented, then the axiom

CM4 is automatically satisfied provided that r(I) = Fib ∩W and r(J) = Cof . This is formalised

as follows.

Definition 6.14. A model category M is called cofibrantly generated if there exist sets I ⊂ Cof

and J ⊂ Cof ∩W, called generating cofibrations and generating trivial cofibrations such that

1. Every morphism f : C → D in I or in J has the property that its domain C is finitely presented.

2. Fib = r(J) and Fib ∩W = r(I).

This can be turned the other way, into the ’Recognition Lemma’ of D.M. Kan.

Proposition 6.15. Let M be a complete and cocomplete category with W, I, J ⊂ MorM. Assume

that the following holds:

1. W satisfies 3-for-2 and is closed under retracts.

2. Every morphism f : C → D in I or in J has the property that its domain C is finitely presented.

3. l(r(J)) ⊆ l(r(I)) ∩W.

4. r(I) ⊆ r(J) ∩W.

5. At least one of the inclusions above is, in fact, a bijection.

Then M admits a model structure with weak equivalences W, Fib = r(J) and Cof = l(r(I)) = I.

One also has in this case Fib ∩W = r(I) and Cof ∩W = l(r(J)) = J .

Proof. CM0 and CM1 are valid by assumption (1). CM2 also follows from the assumption (1)

on W and the fact that l(r(I)) and r(J) are stable under retracts. CM4 follows from the small

object argument, which works due to the assumption (2), and also due to, (3), (4), which allow us

to observe that J are among trivial cofibrations and r(I) are among trivial fibrations.

For CM3, assume that l(r(J)) = l(r(I))∩W (the other case is similar). Then ’trivial cofibration

- fibration’ part of CM3 is trivial. Now let f ∈ r(J) ∩ W, that is, a trivial fibration. Factor

f = p ◦ i, where p ∈ r(I) and i ∈ I. W satisfies 3-for-2, so, as p ∈ r(I) ⊆ r(J) ∩W, we get that

i ∈ l(r(I)) ∩W = l(r(J)). We now can use the retract argument (Proposition 5.8) to see that f is a

retract of p, hence r(I) = r(J) ∩W and we observe that CM3 is satisfied. �
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