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Abstract

The objective of this paper is to provide a systematic treatment of the stationary equilibrium dynamic solutions in
large congested networks. We describe the Stable Dynamics approach that is based only on logical assumptions,
and is amenable to a rigorous mathematical description. All parameters in use have a direct physical meaning and
interpretation. We show existence of the stationary solutions under fairly weak assumptions. For completeness,
we present (and criticize) the standard static traffic assignment models and discuss the key differences.
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1. Introduction

We start this paper by a short historical overview of the models used for equilibrium traf-
fic assignment. Traditionally, in Transportation Science there exists two extreme types
of network assignment models: static network assignment models and dynamic network
assignment models.

Static network assignment models have been developed since about half a century. The
first mathematical description of those models is due to Beckmann et al. (1956). Static
network assignment models are described as follows: given a network, congestion laws and
an origin-destination (O-D) matrix, find a user- equilibrium regime. The user-equilibrium
(UE) concept is based on the (first) Wardrop principle (1952), which essentially says that at
equilibrium each driver selects the shortest route. In their seminal formulation, Beckmann
et al. show that their problem can be formulated as a convex optimization program (with
a non-linear objective function and linear constraints). The output of their model consists
in the equilibrium flows on all arcs of the network. The social optimum (SO) solution
provides a second benchmark. At the social optimum, the total cost, sum of all user costs
is minimized (second Wardrop Principle). This second benchmark corresponds to an ideal
since the decentralization of the social optimum (e.g. via road pricing) is not feasible
from a practical point of view. In other words, there exists no set of realistic policies that
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could be implemented in such a way that all congestion externalities are internalized (see
Lévy-Lambert, 1968), and all the subsequent literature in Transportation Economics (see
also the discussion on marginal cost pricing, discussed by W. Vickrey, in particular in the
context of public transportation (Arnott et al., 1994)).

During the last decades, static network assignment models have been extended in many
directions. Below, we very briefly mention the major extensions of static models. The varia-
tional inequality formulation of static assignment models has been introduced by Dafermos
(1972). In the original formulation, the travel time on an arc only depends on the flow
entering this arc. With the variational inequality approach, interaction between flows (to
model intersections, for example) is possible. Moreover, when the static network assign-
ment models is formulated as a variational inequalities problem, it can be solved using
standard numerical methods. The stochastic user equilibrium (SUE) formulation (in which
drivers route choice is stochastic) defined by Daganzo and Sheffi (1977) extends the deter-
ministic case introduced by Beckmann et al. (1956). At the SUE, no driver can decrease
his perceived travel time by unilaterally changing route (see, Daganzo and Sheffi, 1977 and
Sheffi, 1985). In this case, typically drivers select route according to a (Logit or Probit)
discrete choice model (see, Ben-Akiva and Lerman, 1985 and Anderson et al., 1992). In
the variable or elastic demand extension, the O-D matrix is not fixed and the number of
drivers depends on the travel conditions. The mathematical program formulation of this
problem was already proposed in Beckmann et al. (1956). The mode choice model, which
belongs to this family of extensions, is described in Florian (1977) followed afterwards by
numerous work. Finally, the problem with multi-class users takes into account different
segments (see, e.g. Dafermos, 1972). A segment can be characterized by specific value of
time, specific route choice behavior, specific congestion law, inter alia. Various algorithms
were also proposed to solve those problems. Starting with the Frank and Wolf algorithm
(1956), later on implemented using various acceleration procedures (see, e.g. LeBlanc
et al., 1985; for a more general discussion on numerical procedure, see Chen et al., 2000).
However, in order to interpret the output of these models, we need to find a reasonable and
possibly intuitive dynamic explanation of the static solutions.

Dynamic congestion phenomena have received more and more attention during the last
decades, first at the supply level and more recently at the demand level. In dynamic network
assignment models, travel time on an arc depends on the time of the day, and decisions are
concerned not only with route (and mode) choice but also with the time of use. We can
safely say that dynamic models have emerged as a new paradigm. Despite this fact, the vast
majority of planning software used to simulate policies for large transportation systems
still belong to the family of static network assignment models. Perhaps, the main reason
for such a situation is that static models are amenable to mathematical formulations, they
are less data intensive with respect to dynamic models and they can be easily solved by
the modern numerical schemes. Moreover, existence and uniqueness remain very difficult
to prove for general dynamic models (especially if they includ spill-backs effects, inter
alia).

Intuitively, it is clear that a dynamic process is well described by a static model only if
some of its parameters are constant functions of time. In this case, we expect that there is a
stationary regime which could be provided with a static interpretation. However, as we will



STATIONARY DYNAMIC SOLUTIONS 373

argue later, it is not possible to find such an interpretation for the standard static models of
traffic congestion.

The main goal of this paper is to fill the existing gap between two approaches intro-
duced above by developing an intermediate class of models for which the solutions can be
rigorously interpreted as the stationary regimes of a dynamic processes. Note that such a
methodology is quite standard for System Theory (e.g. Lyapunov stability theory in Control
Science). Thus, we will try to develop some standard tools that we believe are candidate
for the analysis of dynamic transportation models. Note that such tools have already proved
their power in many other fields involving optimization on large networks.

In this paper, we develop the class of Stable Dynamics models. These models are based
on some natural assumptions on drivers behavior. They rely on a minimum set of parameters
for the network, which have a clear physical interpretation. We illustrate this approach with
simple examples and then provides a formulation which holds for any type of network.
We also establish a connection between Stable Dynamics and the minimal cost multi-
commodity transportation problem with bounded arc capacities. This connection appears
to be quite surprising since the solutions of Stable Dynamics model can be associated
with the solution of a Wardrop user equilibrium (UE) problem, while the multicommodity
flow problem corresponds to a social optimal (SO) setting. Of course, our models captures
only some general features of the traffic congestion. However, it seems that for the large
networks this level of details is close to the limit of the performance of the numerical
schemes.

The paper is organized as follows. In Section 2 we study several simple examples (two
routes in parallel, triangle network, Braess network), which help us to develop some intuition
on the stationary solutions of the dynamic assignment problems. In the next Section 3, we
introduce the notation and present some standard results on the Beckmann model for static
traffic assignment. We show that the main element of these models, the arc travel time
function, can be given a natural dynamic interpretation. In Section 4 we describe the Stable
Dynamics models for a general network and prove the existence results. We show that
the solutions of these models can be interpreted as stationary states of a dynamic process.
Concluding remarks are relegated to Section 5. In Appendix 1, we discuss an application
of the Beckmann model to public transportation and show that in this case the presence of
the arc travel time functions is very natural.

2. Logical stationary solutions

Let us start our analysis by finding some logical solutions to several simple examples. We
will try to restrict ourselves by the minimal amount of reliable parameters. We assume
that, for each arc a of the network we can estimate the minimal free traffic travel time
t̄ a . The minimum travel time is a function of regulation (but also on driver behavior and
enforcements). Let us introduce also another characteristic of the arc, the maximal output
flow f̄ a . In urban network the maximal flow depends on the number of lanes of the road,
the duration of the green light at the intersection, the weather conditions, etc. Surprisingly
enough, even from this restricted (and easily available) information we can retrieve the
equilibrium travel time for some dynamic flow patterns.
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Consider the network R and the set of O-D pairs. We seek for a stationary regime, during
a period of time T . That is, the number of users dk travelling from node ωk to δk is assumed
to depart at an uniform flow fk = dk/T . For simplicity we assume that T = 1, so that
fk = dk .

We now introduce three assumptions. The first one is concerned with the route choice.

Assumption 1. Each driver considers as given the travel time pattern. For each O-D pair,
only the minimum travel time routes are selected.

The second assumption is concerned with stationary dynamic solutions. Since we wish
to compute a stationary solution, the inflow on a link could never exceed the capacity, that
is:

Assumption 2. The flow fa on arc a never exceeds the capacity f̄ a of this arc: fa ≤ f̄ a .

Two situations can occur. Either the flow on arc α is smaller than its capacity; then it is
assumed that the travel time on this arc is equal to the minimum travel time. Or the flow
is equal to the capacity, in this case we can only guarantee that the travel time is larger or
equal to the minimum travel time. Summing up:

Assumption 3. Below capacity the travel time on an arc is equal to the minimum travel
time; at capacity it can take any value larger or equal to the minimum travel time, i.e. if
fα < f̄ a , then tα = t̄α and if fα = f̄ a , then tα ≥ t̄α .

Note that this assumption is not a travel time function; it provides us with a more general
object, the link performance model.

2.1. Stationary dynamics for parallel routes

We consider one origin node ω and one destination node δ connected by two arcs denoted
by a and b. The O-D matrix reduces to a single flow, denoted by f . We first assume that
f is a constant function of time. Arc i is characterized by the parameters {t̄ a, f̄ a}, where
t̄ i is the minimum travel time, and f̄ i is the capacity of this arc i , i = a, b. Without loss
of generality, we assume that t̄ a < t̄ b. Each driver is then faced with a route choice, either
use arc a or use arc b. The analysis could be easily extended to any number of routes in
parallel. We first solve for equilibrium.

Three situations occur according to the magnitude of the flow f . We denote by a super-
script e the equilibrium values. (In particular, t e denotes the equilibrium travel time.)

If f < f̄ a , all users select arc a, and the equilibrium travel time is given by: t e = t̄ a .
If f̄ a < f < f̄ a + f̄ b, all users could not benefit from the shortest arc, a and some users

will select arc b. Then f e
a = f̄ a , i.e. the maximum number of users select arc a , while the

remaining users select arc b : f e
b = f − f̄ a . By assumption, f e

b = f − f̄ a < f̄ b, so the
travel time on arc b is t̄ b. Since both arcs are used, they have the same travel time t e with
t e = t e

a = t e
b = t̄ b. In particular, note that the equilibrium travel time is a discontinuous

function of the total flow f .
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If f = f̄ a , f e
a = f̄ a and f e

b = 0, and we cannot assign a specific value to the equilibrium
travel time. Any travel time t e, with t e ∈ [t̄ a, t̄ b], is consistent with a stationary dynamic
regime.

If f > f̄ a + f̄ b no stable dynamic solution exists since the capacity constraints are
necessarily violated.

Let us show that all above constant travel time functions correspond to some dynamic
patterns of the demand flow.

Let us check what happens with our solutions in dynamics. Assume that the flows in
our network change in time τ . Denote by f (τ ) the demand flow. The state of the system is
described by the following functions:

• fi (τ ), i = a, b—the input flow on arc i at time τ .
• ti (τ ), i = a, b—the travel time for drivers entering arc i at time τ .

Clearly, f (τ ) = fa (τ ) + fb (τ ). We can assume also, without loosing too much in
generality, that the travel time functions ti (τ ) are continuous in τ . Let us look first at the
following dynamics: there exists a critical time τ̂ such that

f (τ ) ≤ f̄ a for τ ≤ τ̂

and

f̄ a < f (τ ) < f̄ a + f̄ b for τ > τ̂ .

For simplicity, let us assume that
∫ ∞
τ̂

( f (τ ) − f̄ a) dτ = ∞. From Assumption 3, we
know that before the critical time τ̂ there is no congestion:

fa(τ ) = f (τ ), fb(τ ) = 0, ta(τ ) = t̄ a, tb(τ ) = t̄ b > t̄ a, for τ ≤ τ̂ .

What happens at τ = τ̂? Since ti (τ ) are continuous, we will have tb(τ ) = t̄ b > t̄ a for
some interval [τ̂ , τ̄ ). During this period of time, the first arc will stay more attractive for
the drivers, so,

fa(τ ) = f (τ ), for τ ∈ [τ̂ , τ̄ ).

However, during this period of time, the input flow of the first arc will be greater than the
maximal output flow. This must result in a queue growing at the end of this arc. This queue
will make the travel time ta(τ ) increasing. How long that can happen? Clearly, up to the
moment the travel time on the first arc reaches the level of the travel time on the second arc:

ta(τ̄ ) = t̄ b.

Starting from time τ̄ , the drivers will choose both arcs in such a way that the travel time on
them remains the same. Therefore, for any τ > τ̄ we have the following dynamic solution:

fa(τ ) = f̄ a, fb(τ ) = f (τ ) − f̄ a, ta(τ ) = tb(τ ) = t̄ b, for τ > τ̄ .

The above dynamics can be seen as a transition process between two stationary patterns in
travel time. The particular dynamics of this process can be quite complicated, but it does
not change the final stationary values of travel time. This state is stable since for any flow
pattern f (τ ) such that

f̄ a < f (τ ) < f̄ a + f̄ b, for τ > τ̄ ,
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the equilibrium arc travel time, flow and queue on the first arc and the travel time on the
second arc remain constant over time.

Let us look at the last variant of our solution, in which we have f = f̄ a . In this case

fa = f̄ a, fb = 0,

but we cannot assign a specific value to the equilibrium travel time. We can only say that
t e ∈ [t̄ a, t̄ b]. This uncertainty has an obvious dynamic interpretation. If in our dynamic
setting the integral

∫ ∞
τ̂

( f (τ ) − f̄ a) dτ is finite and small enough, the travel time ta(τ ) can
converge to some value from the interval [t̄ a, t̄ b]. But this value is not stable: any local
change of the flow f (τ ) will result in the change of the size of the queue and, consequently,
in the stabilization of the travel time ta(τ ) at some new level.

Thus, let us make some intermediate conclusions.

• In our example we managed to find a stable stationary characteristics of dynamic assign-
ment without any pre-defined travel time function. We only used the logical consequences
of Assumptions 1, 2, 3.

• We have seen that the arc performance model is not necessarily a functional dependence.
In our example it is represented as some bound on the arc travel time and the arc flow:

ti ≥ t̄ i , 0 ≤ fi (τ ) ≤ f̄ i , i = a, b.

• Our equilibrium solution can be seen as stable stationary states with respect to travel
time.

Note that, the hypothesis which characterizes the above stationary solutions allows a
further characterization of the congestion pattern. Assume, for example, that we are in the
intermediary regime f̄ a < f (τ ) < f̄ a + f̄ b. In this case, the equilibrium travel time is
t̄ b so that there is congestion on arc a. Denote na(τ ) the occupancy of arc a. Since in the
stationary regime the input and the output flows on the arc are the same, we conclude that
the occupancy is a constant function of time:

na(τ ) = na .

Since the travel time on this arc is constant, from the FIFO principle it follows that

ta = na

f̄ a
, (1)

which could be understood as a kind of queuing model. If we assume a vertical queue, the
number of running cars on arc a is nr

a = f̄ a t̄ a . Therefore, the number of queuing cars is:
nq

a = f̄ a(ta − t̄ a). On arc b, there is no queuing cars.
Let us find the social optimum of our model (the optimum values are denoted by a

superscript s). Assume that f (τ ) ≡ f. Note that at the social optimum, the travel time of
each arc should be equal to the minimum travel time on this arc. Let us consider two cases,
in which the stationary solution does exist.

If f < f̄ a , all users are allocated to arc a, and the optimum average travel time is t s = t̄ a .
If f̄ a ≤ f < f̄ a + f̄ b, a flow f s

a = f̄ a is allocated to arc a, and the remaining flow
f s
b = f − f̄ a is allocated to arc b. The optimum average travel time t s , is:

t s = t̄ a f̄ a

f
+ t̄ b( f − f̄ a)

f
= t̄ b − (t̄ b − t̄ a)

f̄ a

f
.
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Since in this case t e = t̄ b, then the relative saving � is:

� ≡ t e − t s

t e
=

(
1 − t̄ a

t̄ b

)
f̄ a

f
> 0.

In this paper we will focus on the study of stationary equilibrium regimes (in travel
time) for general transportation networks. We refer to these regimes as Stable Dynamics
solutions of the traffic assignment problem. The analysis of traffic count data suggests that
this approach is likely to be relevant as for peak and for off-peak hours. What will be
ignored, is how the transportation system evolves from one stationary regime to another.
Later on, we will prove that the existence of a stationary regime can be guaranteed for
general networks under very mild assumptions and that similar conclusions could then be
derived. However, before that we wish to develop our intuition with two more examples.

2.2. Triangle network

Let us consider a simple network with two origin nodes, ω1 and ω2, and one destination
node δ. Node ω1 is connected with δ by an arc with characteristics t̄1 and f̄ 1 and node
ω2 is connected with δ by the second arc with characteristics t̄2 and f̄ 2. Without loss of
generality, we can assume that t̄1 < t̄2. Now, if the demand flows d1 from ω1 to δ and d2

from ω1 to δ satisfy the relation

d1 < f̄ 1, d2 < f̄ 2,

then there is no congestion in the network. In this case

t e
1 = t̄1, t e

2 = t̄2,

and the social cost in the network is as follows:

cs = d1 t̄1 + d2 t̄2.

In what follows, we assume that

da + db > f̄ 1. (2)

Let us modify our network. Namely, let us connect the nodes ω1 and ω2 by a new very short
and efficient arc with the characteristics t̄3 and f̄ 3. We assume that these characteristics
satisfy the following relations:

t̄3 + t̄1 < t̄2, f̄3 > f̄ 1.

What is the impact of this modification? Clearly, it changes nothing for drivers of OD-pair
(ω1, δ). However, for the drivers of OD-pair (ω2, δ) it creates a new shortest path. Therefore
these drivers will try to use it. But, since the capacity of the first arc is not enough to carry out
the total demand flow (2), the drivers from ω2 will create a queue on the first arc. The size of
this queue will be growing up to the moment the travel time along the route ω2 → ω1 → δ

becomes equal to t̄2. Since there is no congestion on the new arc, the travel time on the first
arc must be as follows:

t e
1 = t̄2 − t̄3.
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Thus, the above modification of the network results in the following equilibrium travel times
and arc flows:

t e
1 = t̄2 − t̄3, f1 = f̄ 1,

t e
2 = t̄2, f e

2 = d1 + d2 − f̄ 2,

t e
3 = t̄3, f e

3 = f̄ 1 − d1.

The equilibrium travel time for the drivers of OD-pair (ω2, δ) is not improved. But the travel
time for traveling from ω1 to δ becomes worse. The new social cost is as follows:

cs
1 = d1 · (t̄2 − t̄3) + d2 · t̄2 > cs .

Thus, nobody is better off after the above modification and some drivers are worse off. Such
a phenomenon is known in transportation science as Braess paradox (see, e.g. Steinberg
and Stone, 1988). However, the classical form of that paradox corresponds to the static
model with linear arc performance functions (we give a short overview of these models
in Section 3). Moreover, it is derived for a very special network (we consider this net-
work in Section 2.3). Up to now the theoretical conditions for arising such negative effects
in general static models are still not well completely understood. The example we have
seen in this section seems to be new. Moreover, it corresponds to the simplest network
structure and it is much easier for complete theoretical analysis. An interesting question
is why this triangular network was never considered as an example for the Braess para-
dox. The answer is quite intriguing: It appears that for the triangular network the negative
impact cannot be observed in a static model with strongly increasing linear travel time
functions.

Note that the above equilibrium solution can be supported by the same type of dynamic
analysis of the stable stationary states as it was done in Section 2.1.

2.3. Braess paradox revisited

Let consider a network with four nodes O, B1, B2 and D. Node O is an origin and node D
is a destination. We first consider the following network: node O and B1 are connected by
arc a1, and B1 and D are connected by arc a2. Similarly, node O and B2 are connected by
arc a3, and B2 and D are connected by arc a4. Let f denote the demand flow, i.e. the flow
going from the origin to the destination. Since we are interested in a stationary solution, we
treat f as a constant function of time.

In order to simplify the discussion below, we assume that there is never congestion on
arcs a2 and a3:

f̄ 2 � f, and f̄ 3 � f.

Therefore, there are two routes from the origin node O to the destination node D. Route 1
defined by {O → B1 → D} has a minimum travel time and a capacity given by

t̄12 = t̄1 + t̄2, and f̄ 12 = f̄ 1
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while route 2 defined by {O → B2 → D} has a minimum travel time and a capacity given
by:

t̄34 = t̄3 + t̄4, and f̄ 34 = f̄ 4.

We assume that t̄12 > t̄34.

We wish to solve for a stable dynamic equilibrium. Such an equilibrium exists if f <

f̄ 1 + f̄ 4, a condition that we assumed in the subsequent analysis. There are two cases to
consider.

If f < f̄ 4, there is no congestion on the network and all divers use the shortest path
(route 2), and the equilibrium travel time is t e

I = t̄34.
If f ∈ ( f̄ 4, f̄ 1 + f̄ 4), then congestion occur on route 2 (the shortest), and arc a4 is

congested. The equilibrium travel time is: t e
I = t̄12.

We now consider the impact of an additional arc, denoted arc a5, with f̄ 5 � f , connecting
node B1 and B2. There is now a third route from O to D: {O → B1 → B2 → D}. We
further assumed that:{

t̄1 < t̄3; t̄2 > t̄4

t̄5 < min{t̄3 − t̄1, t̄2 − t̄4}
(3)

We restrict the analysis to the case where f ∈ (max( f̄ 1, f̄ 4), f̄ 1 + f̄ 4); in this case, all
three routes will be used. Condition (3) implies that arc a1 is congested with t e

1 = t̄3 − t̄5
(since both routes {O → B1 → B2} and {O → B2} are used). Similarly, arc a4 is congested
with t e

4 = t̄2 − t̄5. The equilibrium travel time, the same on the three routes, is:

t e
II = t̄3 + t̄2 − t̄5. (4)

Since arcs a1 and a4 are congested, the equilibrium flow satisfy: f e
1 = f̄ 1 and f e

4 = f̄ 4.
Without the additional arc, the equilibrium travel time is t e

I = t̄34. With the additional
link, the equilibrium travel time is t e

II = t̄3 + t̄2 − t̄5. Using condition (3), it is clear that
t e
I < t e

II. Therefore, the additional arc, a5, increases the equilibrium travel time. The faster
is the additional arc, a5, the more severe is the increase in the equilibrium travel time. The
worse case occurs when the additional link has an infinite speed. In this case, nodes B1 and
B2 coincide.

When t̄5 = 0, the equilibrium travel time is t e
II = max{t̄1, t̄3} + max{t̄2, t̄4} (t e

II = t̄3 + t̄2,

if condition (3) holds). Interestingly, the equilibrium travel time is increased when the
connectivity of the network increases. This is because the equilibrium condition adjust
the travel time to the largest travel time, used as a benchmark. Such an effect is also in
operation in the standard presentation of Braess paradox, although it appears somewhat
hidden by the algebraic derivations. Here we were able to derive this paradox using only
logical arguments.

In the next sections, we show how to extend the Stable Dynamic formulation on the
general networks. However, first of all we need to introduce the network notation. We will
give also a brief description of the Static network assignment models, which pretend to
compute the stationary equilibrium solutions.
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3. Static network assignment models: Main results and Beckmann approach

3.1. Main results in static models

Let us introduce some notation. We work with a network R comprised by the set of nodes
N and the set of directed arcs A:

R = {N ,A}, N = {1, . . . , n}, A = {1, . . . , m}.
To each α ∈ A we relate a pair of nodes iα, jα ∈ N . For each arc α ∈ A denote f (α) the
total flow of drivers travelling along this arc. It is convenient to treat the set of all arc flows
as a column vector:

f = (
f (1), . . . , f (m)

)T ∈ Rm .

Again, we will try to treat f as a constant function of time.
In order to describe the travel cost of a trip in the network, for each arc α we introduce

the cost function:

c(α)( f ), f ∈ D ⊆ Rm, α = 1, . . . , m,

where D is a natural open convex domain of those functions. It is convenient to treat the
set of all cost function as a vector function:

c( f ) = (
c(1)( f ), . . . , c(m)( f )

)T
.

In the simplest case, each component of this vector function depends only on the flow at
the corresponding arc. However, we will see that under some natural assumptions on the
function c( f ) we can treat also the interaction of the flows at different arcs.

The presence of the cost functions in the traffic assignment model represents the main
difference between the standard static models and the Stable Dynamics approach. In Section
3.3 we will see that these objects create a lot of troubles for any kind of dynamic interpretation
of the results. However, first of all we need to see the story up to the end.

For network R we define the set of origin-destination pairs (O-D pairs):

OD = {πk = (ωk, δk) : ωk, δk ∈ N , ωk �= δk, k = 1, . . . , p}.
Each O-D pair πk generates a demand dk . This demand is traditionally considered as an
average flow of drivers, which need to travel from node ωk to another node δk ; so the demand
is a non-negative real number.

Further, for each O-D pair πk we can introduce the finite set of all possible routes con-
necting ωk with δk :

Rk = {ak,r ∈ Rm, r = 1, . . . , rk},
where the component a(α)

k,r = 1 if the arc α is included in the route r ; otherwise this
component is zero. For the sake of simplicity we denote Ak the matrix composed by all
column vectors ak,r :

Ak = (
ak,1, . . . , ak,rk

)
.
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Finally, for each O-D pair πk we introduce the set of feasible route flow partitions:

k =
{

Fk ∈ Rrk+ :
rk∑

r=1

F (r )
k = dk

}
.

The component F (r )
k of the vector Fk ∈ k tells us which flow goes from the origin ωk to

the destination δk along the route r from the corresponding set of routes Rk .
The above notation allows us to describe the loading of the network R in a convenient

form. Indeed, if for O-D pair πk we choose some route flow partition Fk ∈ k , then the
total impact of these flows in the arc flow pattern in the network is as follows:

fk =
rk∑

r=1

F (r )
k ak,r = Ak Fk .

Denote F = (F T
1 , . . . , F T

p )T and  = ∏p
k=1 k . Then the total arc flow pattern in the

network is

f =
p∑

k=1

Ak Fk ≡ AF,

where A = (A1, . . . , Ap).
Now we can define the travel cost in the network as a function of the full flow partition

vector F . Indeed, if we choose some F ∈ , then the travel cost of arc α is

c(α)( f ) = c(α)(AF).

Then, for O-D pair πk the cost of travelling along some route ak,r ∈ Rk is as follows:

C (r )
k (F) =

m∑
α=1

c(α)(AF)a(α)
k,r ≡ 〈c(AF), ak,r 〉.

Thus, the route cost vector for this O-D pair is defined as

Ck(F) = AT
k c(AF).

Finally, the total route cost vector for all O-D pairs C(F) = (CT
1 (F), . . . , CT

p (F))T can be
represented as

C(F) = AT c(AF).

Denote D = {F ∈  : AF ∈ D}. Now we can write down the standard equilibrium
traffic assignment problem:

Find a flow partition vector F∗ ∈ D such that

for any O-D pair πk we have (F∗
k )(l) > 0 ⇒ C (l)

k (F∗) = min
1≤r≤rk

C (r )
k (F∗). (5)

It is well known (see Nagurney, 1993a) that the equilibrium problem (5) can be written in
the form of variational inequality. For completeness of the paper we provide this statement
with a simple proof.
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Theorem 1. The problem (5) is equivalent to finding a strong solution F∗ the variational
inequality (6), that is

Find F∗ ∈ D:〈C(F∗), F − F∗〉 � 0 for all F ∈ D. (6)

Proof: Indeed, let F∗ be a solution to variational inequality (6). Consider an arbitrary
O-D pair πk . Assume that (F∗

k )(l) > 0 and for some other route r ∈ Rk we have C (r )
k (F∗) <

C (l)
k (F∗). Let us choose ε > 0 small enough, such that all coordinates of the vector

F̂k = (
(F∗

k )(1), . . . , (F∗
k )(l) − ε, . . . , (F∗

k )(r ) + ε, . . . , (F∗
k )(rk )

)T

are non-negative and F̂k ∈ k . Therefore, for ε small enough

F̂ = ((F∗
1 )T , . . . , (F̂k)T , . . . , (F∗

p )T )T ∈ D.

At the same time,

〈C(F∗), F̂ − F∗〉 = 〈Ck(F∗), F̂k − F∗
k 〉 = C (l)

k (F∗) · (−ε) + C (r )
k (F∗) · ε < 0.

This contradicts to our assumption that F∗ is a solution to (6).
Vice versa, let F∗ be a solution to (5). Denote

uk = min
1≤r≤rk

C (r )
k (F∗), k = 1, . . . , p.

Since any vector F ∈ D has non-negative components, we obtain:

〈C(F∗), F〉 =
p∑

k=1

〈Ck(F∗), Fk〉 =
p∑

k=1

rk∑
r=1

C (r )
k (F∗)F (r )

k

�
p∑

k=1

(
uk

rk∑
r=1

F (r )
k

)
=

p∑
k=1

ukdk

=
p∑

k=1

(
uk

rk∑
r=1

(F∗
k )(r )

)
=

p∑
k=1

rk∑
r=1

C (r )
k (F∗)(F∗

k )(r )

=
p∑

k=1

〈Ck(F∗), F∗
k 〉 = 〈C(F∗), F∗〉.

Thus, the equilibrium traffic assignment problem (5) is completely equivalent to the
variational inequality problem (6). In order to ensure the existence of the solution to the
latter problem, we need some assumptions.

Definition 1. The travel cost vector function c(x) is called monotone if

〈c(x) − c(y), x − y〉 � 0 ∀x, y ∈ D.

If this inequality is strict, then the function is called strictly monotone. Function c( f ) is
called closed if for any y ∈ D we have 〈c(x), x − y〉 → +∞ as x → ∂ D.

Note that the closed monotone vector functions may be discontinuous and unbounded
on their domain. Nevertheless, this property ensures some general existence results for
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corresponding variational inequalities. In the following theorem we use some results from
the theory of monotone variational inequalities (see Nesterov and de Palma, 2000).

Theorem 2. Let the travel cost function c(x) be closed and monotone. If D �= O✚, then
there exists a weak solution F∗ to the variational inequality problem (6), that is

F∗ ∈ D : 〈C(F), F − F∗〉 � 0 ∀F ∈ D. (7)

If c(x) is continuous, then F∗ is also a strong solution to (6). If c(x) is strongly monotone,
then in both cases the solution is unique.

Proof: Since C(F) = AT c(AF), the statement of the theorem follows from the standard
results (see, e.g. Nesterov and de Palma, 2000).

In the next section we will see some important examples of the closed monotone travel
cost functions, which are discontinuous and unbounded on their domain.

3.2. Beckmann model

To conclude this section, let us discuss a particular case of the general equilibrium traffic
assignment model (5), which is called Beckmann model (see Beckmann et al., 1956). In this
model it is assumed that for each arc the travel cost function c(α)( f ) only depends on the
flow on this arc:

c(α)( f ) ≡ c(α)
(

f (α)
)
, α = 1, . . . , m. (8)

Let us assume also that 0 ∈ D. Under these assumptions the variational inequality problem
(6) can be written in much simpler form. Indeed, let us define the following functions:

σ (α)(u) =
∫ u

0
c(α)(τ ) dτ, α = 1, . . . , m.

Note that (σ (α)(u))′ = c(α)(u). Therefore, in view of Assumption 1, each component σ (α)(u)
is a convex function in u. Hence, the function

σ ( f ) =
m∑

α=1

σ (α)
(

f (α)
)

is convex in f. Let us look now at the function

S(F) = σ (AF), dom S = {F : AF ∈ D}.
This function is closed and convex. Let us assume for a moment that c( f ) is continuous.
Then S(F) is differentiable and

∇S(F) = AT c(AF) ≡ C(F).

Thus, the variational inequality condition (6) can be written as

〈∇S(F∗), F − F∗〉 � 0 ∀F ∈ D.
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And that is exactly the optimality condition for the following convex minimization problem:

S∗ = min
F

{S(F) : F ∈ D} = min
f,F

{σ ( f ) : f = AF, F ∈ D}. (9)

Thus, we come to the following statement.

Theorem 3. Let the travel cost function c( f ) be closed and monotone. If it satisfies the
condition (8), then any solution to the convex optimization problem (9) is a weak solution
of the variational inequality (7). If c( f ) is continuous, then any solution of this problem is
an equilibrium flow partition for the problem (5).

Note that the optimization formulation (9) has at least two advantages with respect to
the variational inequality problem (6). First of all, in general the optimization problems
are much easier from the computational point of view than the variational inequalities (see
Nemirovsky and Yudin, 1983). The second advantage is related to the number of variables
in (9) and (6). Both of these problems are posed with respect to the total flow partition
vector F. This means, that in order to form the matrix A in these problems, we need to
enumerate all possible paths in the network. Even for relatively small networks the number
of the paths is exponentially large. Therefore both problems are solvable numerically only
for a very small network. Nevertheless, since the problem (9) is an optimization problem,
we can rewrite it in an equivalent dual form with a reasonable number of variables. We
will see that this dual problem is solvable by the numerical schemes and that the primal
variables F (or a part of this vector) can be also computed.

Let us derive now the dual form of the problem (9). First of all, we need to introduce the
concept of conjugate function.

Definition 2. For convex function ϕ(x) : dom ϕ → R, the function

ϕ∗(s) = sup{〈s, x〉 − ϕ(x) : x ∈ dom ϕ}
is called conjugate to ϕ.

Note that the function ϕ∗(s) is always convex and under very mild assumptions we have
(ϕ∗)∗ = ϕ. This means that

ϕ(x) = sup{〈s, x〉 − ϕ∗(s) : s ∈ dom ϕ∗}.
For our goals we need to work only with conjugate functions of one variable. Namely,

we need to define

σ (α)
∗ (τ ) = sup

{
τu − σ (α)(u) : u ∈ dom σ (α)

}
, α = 1, . . . , m. (10)

In the next section we will consider some typical examples of the functions σ (α)(·), and
we will see that in many cases the corresponding conjugate functions can be computes in a
closed form.

We need to introduce also the shortest path functions in the network R. Let us fix some
travel time on the arcs of the network:

t = (
t (1), . . . , t (m)

)T ∈ Rm .
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Denote T(i, j)(t) the shortest path distance between the nodes i and j with respect to the arc
travel time pattern t. For an O-D pair πk = (ωk, δk) denote Tk(t) = T(ωk ,δk )(t). It is easy to
see that

Tk(t) = min
1 � r � rk

〈ak,r , t〉,

so it is a concave piece-wise linear function of t.
Using the functions (10) and the travel time functions Tk(t), we can define the problem

dual to (9):

S∗ = max

{
p∑

k=1

dk Tk(t) −
m∑

α=1

σ (α)
∗

(
t (α)

)
: t ∈ F

}
, (11)

where F = ∏m
α=1(dom σ

(α)
∗ ).

Theorem 4. If D �= ∅, then the optimal solutions F∗ and t∗ for the problems (9) and (11)
exist and S∗ = S∗. Moreover, t∗ is the vector of optimal dual multipliers for the equality
constraints f = AF in (9).

Proof: Indeed, for the Beckmann model we have:

S∗ = min
f,F

{
m∑

α=1

σ (α)
(

f (α)
)

: f = AF, F ∈ 

}

= min
f,F

{
m∑

α=1

max
t (α)∈ dom σ

(α)
∗

[
f (α)t (α) − σ (α)

∗
(
t (α)

)]
: f = AF, F ∈ 

}

= max
t∈F

min
f,F

{
〈 f, t〉 −

m∑
α=1

σ (α)
∗

(
t (α)

)
: f = AF, F ∈ 

}

= max
t∈F

[
min

f,F
{〈 f, t〉 : f = AF, F ∈ } −

m∑
α=1

σ (α)
∗

(
t (α)

)]
.

It remains to note that

〈 f, t〉 = 〈AF, t〉 = 〈F, AT t〉 =
p∑

k=1

〈
Fk, AT

k t
〉
.

Hence,

min
f,F

{〈 f, t〉 : f = AF, F ∈ } =
p∑

k=1

min
{〈

Fk, AT
k t

〉
: Fk ∈ k

} =
p∑

k=1

dk Tk(t).

Thus, instead of solving the problem (9) of very high dimension, we can solve a non-
smooth convex optimization problem (11), where the number of variables is equal to the
number of arcs in the network. The objective function of the latter problem includes the
shortest path functions, which can be computed very efficiently (see, for example, Knuth,
1979).
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3.3. Scope and limitation of Beckmann model

Traditionally, the Beckmann model, described in the previous section, is used for the analysis
of congestion arising in private transportation (flows of private cars in urban or interurban
road structures). In this case, we have to interpret the arc travel cost function c(α)( f (α)) as
travel time spent by the drivers on arc α. There were proposed many different forms of
such travel time functions. All of them lead to a problem which can be solved numerically.
However, the question is how much such models are consistent with the physical laws
regulating traffic congestion.

Indeed, let us look at the main assumption in the Beckmann model. It reads as follows:

The travel time on each arc is a non-decreasing function of flow.

Let us try to examine this statement in more details, by discussing four different types of
arguments.

First, if we agree that the static models should provide us with a stationary regime of a
dynamic process, then necessarily the flow and the density (or occupancy) of drivers on a
particular arc, as well as the travel time on this arc are constant over time. Note that at a
stationary regime, the following fundamental identity necessarily holds:

flow = speed × density.

Let us assume for a moment that the density of drivers is constant over time. We examine
below the impact of an exogenous change in the (arrival) flow. Since the density is constant,
an increase of the flow results in a proportional increase of the speed and, consequently, in
a decrease of the travel time, a contradiction. Thus, in order to justify this main assumption
(see above), we need to assume also that the density is increasing much faster than the
flow. Unfortunately, this is not always possible since the feasible range of variation of
the density on the roads is not too large. The density is bounded from above by ρmax =
1000 m/(6 m/veh) ≈ 165 veh/km, where 6 m is the average length occupied by a car in
a stop and go movement. The corresponding speed is about 3 kilometers an hour. On the
other hand, for density of about 33 veh/km, which is five-six times smaller than ρmax, we
can already observe free flow speed on urban freeways (about 90 km/hr). This range of
variation of the density (from 1 to 6) clearly does not allow us to model in a consistent
way the significant drop of the speed (by a factor of 30) which parallels the increase in the
flow.

Second, applied static models allow flows to be larger than the capacity. Then necessarily
the additional flow has to be assigned to the next time period, so that the regime in this case
is not stationary. In the next section, we will discuss another approach, Stable Dynamics,
in which we only consider stationary regimes. This is possible by the fact that we assume
the capacity constraint could never be violated.

Third, the basic observation of traffic count suggests that a small flow can correspond
to two opposite situations. Either the road is not attractive and the drivers do not use it;
then we observe the free traffic conditions on this arc (this is known as the stable branch
of the fundamental diagram). Or, the road is heavily congested and the speed is very small
(and as a consequence the flow is very small). Thus, we cannot say that the (input) flow
is the only variable which is responsible for the travel time on the arc. Traffic count data
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widely suggest that the same flow may support more than one travel time pattern (unsta-
ble branch). In other words, the relation between travel time and flow is not a priori a
function but a correspondence. Of course, a dynamic model could easily handle the fact
that the same flow may be consistent with more than one speed regime. As shown in the
next section, the stable dynamic approach is also consistent with those basic traffic count
observations.

Four, the second assumption (8) in Beckmann’s model tells us that only the flow on a
particular arc is responsible for the travel time at the same arc. We have seen above that
this assumption is not necessarily satisfied, since the relation between flow and travel time
is not one to one. This should not be a surprise for the reason described below. Indeed, the
travel condition of an arc is related to the travel conditions of this arc with respect to traffic
conditions on the surrounding road network, that is on the nearest alternative roads. This
does not say that because of road intersections the flow on an arc may slow down the cars of
the intersecting roads. This is true, but our suggestion is different. We wish to say that the
equilibrium travel conditions on an arc depend, a priori on the equilibrium travel conditions
on all substitue roads. This implies that any relation between travel time and flow, defined
on a specific arc, is incomplete. Indeed the travel time is an outcome of the equilibrium
conditions and it could not be understood out of the equilibrium context, but only along the
equilibrium paths.

The above discussion shows that, despite its theoretical attraction, Beckmann’s model is
not consistent with a stationary regime and could not explain that the travel time is not a
function of the flow. Thus, we come to the following natural question:

Is there any transportation network model

for which Beckmann’s assumptions are rigourosly satisfied?

In fact the authors came to a conclusion that the Beckmann assumptions are very much
suitable for a rigorous analysis of public transportation with traffic congestion. However,
since this topic is quite far from the main scope of this paper, we put our arguments in
Appendix 1. In the next Section 4, we present an alternative approach for finding the sta-
tionary equilibrium solutions for traffic congestion, which is free from the above objections.

4. Stable dynamics: Derivation for a network

4.1. Structure of equilibrium flow

Consider now a general transportation network. Let assume that the arc travel time pattern
t = {tα}α∈A is given. Then, for each O-D pair πk , we can compute the shortest-path travel
time function Tk(t), with

Tk(t) = min{〈ak,r , t〉, r = 1, . . . , rk}.
Therefore, Tk(t) is a concave piece-wise linear function of t which is defined for any t ∈ Rm .

Recall that for any function f (x), which is concave on Rm , at each point a superdif-
ferential, denoted by ∂ f (x) can be defined. This is a closed convex set such that for any
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g ∈ ∂ f (x), the following inequality holds:

f (x) ≤ f (x) + 〈g, y − x〉, ∀y ∈ Rm .

We now look at the superdifferential of Tk(t). Define Ik(t) as

Ik(t) = {r ∈ [1 . . . rk] : 〈ak,r , t〉 = Tk(t)}.
In other words, Ik(t) is the set of all shortest paths with respect to t , which connect the
origin node ωk to the destination node δk . Then

∂Tk(t) = Conv{ak,r , r ∈ Ik(t)}.
This set allows us to characterize in a very compact form the equilibrium flows induced

by the O-D pair πk in the network R.

Lemma 5. The flow vector fk is compatible with Assumption 1 if and only if there exists
some g ∈ ∂Tk(t) such that

fk = dk g.

In the sequel, we call such a vector fk the equilibrium flow of the O-D pair πk . Note that
the cumulative arc flow f is just a summation of all OD-flows:

f =
∑

k∈OD
fk .

We call f the equilibrium flow if it can be represented as a sum of equilibrium flows of
all O-D pairs. Note that the equilibrium flows are defined with respect to the arc travel time
pattern t .

Consider now the cost function

C(t) =
∑

k∈OD
dk Tk(t).

Theorem 6. The arc flow vector f ∈ Rm is an equilibrium flow with respect to the arc
travel time pattern t if and only if

f ∈ ∂C(t). (12)

This theorem allows us to answer some interesting questions. Let the demand flow
{dk}k∈OD be known.

1. Given the arc travel time vector t , we can describe all possible equilibrium flows, which
can arise in the network. That is

fk ∈ dk∂Tk(t), k ∈ OD,

f =
∑

k∈OD
fk .

2. Given the arc flow vector f , we can check whether it is possible to find an arc travel
time vector t , with respect to which f is an equilibrium flow.
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Lemma 7. The arc flow f is an equilibrium flow in the network R if and only if the
following optimization problem

max
t

[C(t) − 〈 f, t〉] (13)

admits a non-negative solution te.

This statement shows that the information from the traffic counters can help to reconstruct
the equilibrium travel time in the network. If all arc flows are known, this data is enough in
order to find the equilibrium travel time. However, even a partial knowledge can help (see
Section 4.4).

Note that the results presented in this section are based only on Assumptions 1, 2 and
3. In particular, the description of arc performance is only based on parameters which are
directly measurable. Interestingly, we never use an hypothesis on arc performance, when
arcs are congested.

4.2. Max-flow model

Let us show how we can get the equilibrium solutions discussed in Section (4.1). We use
the following max-flow performance model:

tα ≥ t̄α, 0 ≤ fα ≤ f̄ α, α ∈ A. (14)

Theorem 8. The arc travel time te and the arc flow vector f e is an equilibrium solution
of the model (14) f and only if there is a solution to the problem

max
t

[C(t) − 〈 f, t〉 : t ≥ t̄], (15)

and f e = f̄ − se, where se is a vector of optimal dual multipliers for the inequality con-
straints in (15).

4.3. Dual max-flow model

Note that (15) is a convex optimization problem. Therefore, as discussed below, it can be
reformulated in an equivalent dual form.

In order to perform this task, it is convenient to introduce for each origin ωk ∈ O a
demand flow vector dωk ∈ Rn, where n = |N |. Each component of this vector is the
demand flow from ωk to the corresponding node. Denote by E ∈ Rnxm the incidence matrix
of the network R:

Eωkα =




1 if arc αenters into node ωk

−1 if arc α goes out of node ωk,

0 otherwise.

ωk = 1, . . . , n, α = 1, . . . , m.

The problem dual to (15) can be written in terms of arc flow vectors fi ∈ Rm , generated
by the origins ωk ∈ O.
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Lemma 9. The problem

min
f, fα

〈 f − f̄ , t̄〉
s.t. f =

∑
ωk∈O

fωk ≤ f̄ , (16)

E fωk = dωk , ωk ∈ O,

fωk ≥ 0, ωk ∈ O,

is dual to (15).

Thus the problem dual to (15) is the minimal cost multi-commodity transportation prob-
lem with bounded arc capacities. To the best of our knowledge, this problem was never
considered for finding a user equilibrium in transportation systems. Traditionally, problems
of that type are used for finding a system optimum. However, note that in our framework the
solution of this problem gives us only the flow pattern in the congested network. Intuitively
it seems reasonable that, when congestion occurs, the drivers increase the set of used paths
in a monotone way, starting from the free traffic shortest path. The equilibrium arc travel
times arise in this problem as the optimal dual multipliers from the inequalities f ≤ f̄ .
Note that the problem (16) belongs to the class of models studied by Larson and Patrikson
(1997) (see, also Patrickson (1994) and Yang and Lam (1996)). However, in our approach
we derive the model directly from the behavioral assumptions. Therefore the interpretation
of the equilibrium solutions becomes much easier.

It is interesting that the problem (16) provides us also with a social optimum solution.
Indeed, if f e is a solution of this problem, then 〈 f e, t̄〉 is the optimal social cost. Thus, the
equilibrium solution differs from the social optimum solution only by the queue created by
the drivers along the most attractive routes (see the discussion of two routes in parallel, for
an illustration). These queues are clearly inefficient from the social point of view and they
are null at the social optimum. However, they increase the travel time along the best routes
up to the equilibrium level. As we have seen, the flow pattern for the user equilibrium and
the social optimum is the same.

4.4. Mixed max-flow model

At the end of Section 4.1, it was mentioned that the complete knowledge of the arc flows
in the network allow to recover the equilibrium travel time and the equilibrium OD-flows
without any additional information for the arc performance, once they are congested. How-
ever, in real networks, the measurements of traffic counters are typically only available for
a small number of arcs. In this case, we can combine the available information with the
max-flow arc performance model.

Let consider the following model:

fα = f̂α α ∈ C
(17)

0 ≤ fα ≤ f̄ α, tα ≥ t̄α α ∈ A \ C.

In the above model, the set C corresponds to a subset of arcs, for which traffic count
information does exist.
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Theorem 10. The arc travel time te and the arc flow f e is an equilibrium solution to the
model (17) if and only if te is a non-negative solution to the problem

max
t

[
C(t) −

∑
α∈C

f̂αtα −
∑

α∈A\C
f̄ αtα : tα ≥ t̄α, α ∈ A \ C

]
, (18)

and f e
α = f̄ α − se

α, α ∈ A \ C, where se
α are the optimal dual multipliers for the inequality

constraints in (18).

Note that the problem (18) may be unsolvable. In this case the observed traffic counts
contradict our choice of demand flows.

5. Concluding remarks

In Beckmann’s type models, it is possible to consider situations with unbounded travel
time functions. In our models, the equilibrium flows on each arc never exceeds the limiting
capacity of this arc. When the flow is stabilized at the capacity level, the queue on this arc
starts to grow. The level on which the queue is adjusted does not depend on the capacity of
this arc, but on the existence and values of the travel time on the alternative routes. If there
is no such an alternative route, the queue may grow up to infinity and we conclude that a
stationary regime for this level of demand flow is impossible. If such an alternative route
exists, the equilibrium solution is interpreted as the stationary regime of a dynamic process.

The approach introduced in this paper differs from the traditional practice. To our knowl-
edge, the main problem that attracts the attention of researchers is the description of the
congestion induced by commuters during the peak hours. In order to explain this phe-
nomenon for private transportation, one can apply either the Beckmann-type static models
(however, see the criticism in Section 3.3), or a dynamic model (such as METROPOLIS,
see de Palma and Marchal (2001), DYNASMART, see Mahmassani (1998) or dynaMIT, see
Ben-Akiva et al. (1998)). Stable Dynamics proposes a third alternative. Clearly, congestion
during the peak hours can hardly be seen as a stationary regime. Therefore, Stable Dynamics
can only provide an aggregate description of this phenomenon. At the same time, its natural
application is the description of the congestion during the whole day . From our observa-
tions, we know that in large cities, congestion occurs during the whole day and is quite
stable. Note that the social effect of congestion during the whole day is much larger than
that occurring during the peak hours. For example, traffic count data show that the number
of drivers (commuters) who cross the ring roads in large cities during the peak hours is quite
small (60 thousands in two directions for Paris Bd. Périphérique, for example). Thus, the
social cost of the commuter trips is rather small, and the number of commuter trips tends
to decrease from year to year. Contrary, during the day period, there is a lot of commercial
traffic with a much higher cost (generalized travel time cost, gasoline, parking cost, wage of
the driver, etc.). Therefore, any improvement of transportation networks for daily traffic will
immediately result in large social savings. And it seems that the Stable Dynamics approach
fits very well such situations.

A major advantage of static over dynamic models is that the former have less data re-
quirements (with the exception of METROPOLIS de Palma and Marchal (2001), which
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basically uses static data). This means that most dynamic models (micro-simulators, oper-
ations planning or planning tools) can hardly be used with only the standard data provided
for example by GIS. The collection of simple data (network, number of lanes, jobs and
employment) is usually performed in urban areas. This data is exactly the same as those
required by Stable Dynamics and as a consequence we believe that such models could play
an important role in the near future.

Another advantage of our formulation is that it is based on a few logical rules, which
have a simple interpretation. We believe that there is a niche between sophisticated static
assignment models, as used by engineers and transportation planners, and over-simplified
models as those used by transport economists. Our presentation was mainly motivated by
simplicity and consistency. Many extensions could be integrated in the proposed framework.
We only presented the main template that will be enriched later on.

To conclude, we want to stress out that the numerical complexity of the models described
in this paper is of same level as that one involved in the standard Beckmann models. The
latter models can be solved quite efficiently by existing software and we do not expect any
numerical difficulties for the new models described in this paper.

Appendix 1: Beckmann model for public transportation

It is clear that the flows of the passengers in the public transportation networks cannot be
explained by the models used for private transportation. The main difference is that the
travel time in a public network is constant and it does not depend on the passengers’ flows.
So, either we assume that the passengers always travel along the shortest path, or we need
to find a reason for diversification of the used routes, which is unrelated to travel time. In
the sequel, we suggest a criterion for the route choice which takes into account not only the
travel time, but also the convenience of the trip.

Let us try to formalize the idea of convenience. In order to be more precise, we consider
a metropolitan public transport network. The main component of such a network is a line,
with several stations (or nodes) sequentially connected by directed arcs. For each arc α,
we know the travel time t̄ (α) > 0. We assume that the time interval between the successive
trains on this line is constant and equal to γ > 0 and that each train is composed by the
same number of carriages q . Let at some stationary regime we observe a constant flow of
passengers f (α) on the arc α. Then the average number of passengers in each carriage is
nα = γ f (α)/q .

Our main assumption is as follows:
The inconvenience of travelling by arc α is a non-decreasing function of nα .

We can find different reasons for such inconvenience. For example, we can assume that
inconvenience is equal to zero for nα ≤ n̂, where n̂ is the number of seats in the carriage.
When nα passes the value n̂, we can assume that this characteristics jumps up to a certain
level. Then, it increases and goes to infinity as nα approaches n̄, the maximal possible
number of passengers in the carriage.

In order to form the cost function of the above arc, we need to express somehow the
inconvenience in the time units. Then, in view of the above considerations, we can assume
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that the cost function of the arc α is as follows:

c(α)
(

f (α)
) = t̄ (α) + ξ (α)

(
γ

q
· f (α)

)
,

where ξ (α)(·) is a non-decreasing function of one variable, ξ (α)(0) = 0. Thus, we get an arc
performance model, which perfectly fits the Beckmann assumptions.

As soon as we have chosen the functions ξ (α)(·), the remaining part of the model for
the metro transportation is quite straightforward. We form the set of origins and the set of
destinations and define the O-D matrix. We model all metro lines available in the city and
connect some stations by the arcs with fixed travel time (line change). We connect also the
nodes of the different lines which share physically the same platform. Finally, we define
the access time from the centroids to some stations. In the latter objects we can include also
some estimates for the waiting time. As a result, we get a Beckmann model, which can be
solved using its dual form (11).

In the dual form of the Beckmann model we work with conjugate functions σ
(α)
∗ (·). Let

us show by an example how they can be computed from a particular form of the function
ξ (α)(·). Let us choose the latter function as follows:

ξ (α)(n) = 0, for 0 ≤ n ≤ n̂,

ξ (α)(n) = a(n̄ − n̂)

n̄ − n
, for n̂ < n < n̄.

In this expression a is the inconvenience from absence of free seats, expressed in time units.
This inconvenience goes to infinity as n approaches n̄, the total capacity of the carriage.
Then

σ (α)(u) =
∫ u

0

[
t̄ (α) + ξ (α)

(
γ

q
· τ

)]
dτ = t̄ (α) · u + aq

γ
(n̄ − n̂) ·

(
ln

n̄ − n̂

n̄ − γ

q u

)
+
,

where (v)+ = max{0, v}. Therefore

σ (α)
∗ (τ ) = sup

u

{
τu − σ (α)(u) : u <

q

γ
n̄

}

= aq

γ
ψ

(
τ − t̄ (α)

a

)
, dom σ (α)

∗ = [t̄ (α), ∞),

where

ψ(v) = n̂ · v, for 0 ≤ v ≤ 1,

ψ(v) = n̄ · v + (n̄ − n̂)

[
ln

1

v
− 1

]
, for v ≥ 1.

Note that this function is convex and continuously differentiable.
The above example is only one possibility among many others. Another interesting

dependence has the following form:

ξ (α)(n) = 0, for 0 ≤ n ≤ n̂,

ξ (α)(n) = a(n̄ − n̂)

n̄ − n
− a(n − n̂)

n̄ − n̂
, for n̂ < n < n̄.
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In this case, the second expression has zero derivative at n = n̂, which looks quite reason-
able. Note that the corresponding dual functions for the latter example are also computable
in a closed form. In both cases the corresponding equilibrium solution can be easily com-
puted numerically from the dual Beckmann formulation (11). We leave the corresponding
modeling details (connections, price of the tickets, etc.) as an exercise for the reader.
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