Упражнения 2. Топологические свойства РГ потока

(Сканы/фото решений данных упражнений принимаются до: 20.02.14 на e-mail: grigory@princeton.edu)

Определение 1: Σ — есть беконечно-мерное пространство квазилокальных действий. Для теории скалярного поля φ_0 с симметрией $\varphi_0 \to -\varphi_0$, общий вид действия выглядит как

$$\mathcal{A}[\varphi_0] = \int d^d x \left[\sum_{k=1}^{\infty} \frac{u_{2k}}{(2k)!} \varphi_0^{2k} + \sum_{k=0}^{\infty} \frac{v_{2k}}{(2k)!} \varphi_0^{2k} (\partial \varphi_0)^2 + \sum_{k=0}^{\infty} \frac{w_{2k+1}}{(2k)!} \varphi_0^{2k+1} (\partial \varphi_0)^2 \partial^2 \varphi_0 + \dots \right], \tag{0.1}$$

таким образом бесконечное число коэффициентов $\{u_{2k}, v_{2k}, w_{2k+1}, ...\}$ может рассматриваться как координаты на пространстве Σ .

Определение 2: Операция ренормгруппового преобразования RG есть операция производимая в два шага:

1. Интегрирование по быстрым переменным $\tilde{\varphi}$, где $\varphi_0(x) = \varphi_1(x) + \tilde{\varphi}(x)$:

$$\varphi_1(x) = \int_{|k| < \Lambda/L} \phi(k)e^{ikx}, \quad \tilde{\varphi}(x) = \int_{\Lambda/L < |k| < \Lambda} \phi(k)e^{ikx}. \tag{0.2}$$

2. Перемасштабирование координат $x \to x/L$: $\varphi_1(x) = Z^{-1/2}(L)\varphi_0(x/L)$. Для действия это можно записать в виде ряда преобразований

$$\mathcal{A}_{\Lambda}[\varphi_0(x)] \xrightarrow{1} \mathcal{A}_{1,\Lambda/L}[\varphi_1(x)] \xrightarrow{2} \mathcal{A}'_{\Lambda}[\varphi_0(x)], \tag{0.3}$$

где $\mathcal{A}'_{\Lambda}[\varphi_0(x)] = \mathcal{A}_{1,\Lambda/L}[Z^{-1/2}(L)\varphi_0(x/L)].$

Главное предположение: Ренормгрупповое преобразование примененное к квазилокальному действию производит опять квазилокальное действие, то есть не выводит нас за пределы Σ :

$$RG: \Sigma \to \Sigma$$
.

Или другими словами: если $\mathcal{A} \in \Sigma$, то $\mathcal{A}' = RG_l\{\mathcal{A}\} \in \Sigma$, где $l = \log L \geqslant 0$.

Свойство 1: Ренормгрупповое преобразование удовлетворяет свойству:

$$RG_{l+l'}\{\mathcal{A}\} = RG_l\{RG_{l'}\{\mathcal{A}\}\}, \quad RG_0\{\mathcal{A}\} = \mathcal{A}. \tag{0.4}$$

Свойство 2: Для инфинитезимального преобразования можно записать

$$RG_{\delta l}\{\mathcal{A}\} = \mathcal{A} + B\{\mathcal{A}\}\delta l + O(\delta l^2),$$
 где $B\{\mathcal{A}\} = \frac{d}{dl}RG_l\{\mathcal{A}\}\Big|_{l=0}$. (0.5)

Упражнение 1: Пусть $A_l = RG_l\{A_0\}$, где A_0 какое-то начальное квазилокальное действие. По-кажите, что верно

$$\frac{d}{dl}\mathcal{A}_l = B\{\mathcal{A}_l\}. \tag{0.6}$$

Упражнение 2: Покажите, что если в теории с действием \mathcal{A}_0 корреляционная функция двух полей при $|x| \to \infty$ равна

$$\langle \varphi_0(x)\varphi_0(0)\rangle \approx e^{-|x|/R_c},$$
 (0.7)

то в теории с $\mathcal{A}_l = RG_l\{\mathcal{A}_0\}$, она равна

$$\langle \varphi_0(x)\varphi_0(0)\rangle \approx e^{-|x|/(R_c e^{-l})}.$$
 (0.8)

Определение 3: Σ_c есть подпространство в Σ с $R_c=\infty,$ а $\Sigma(l)=RG_l\{\Sigma\}.$ Также $\Sigma(\infty)=\lim_{l\to +\infty}\Sigma(l).$

Упражнение 3: Покажите, что если $A \in \Sigma(\infty)$, то и $A_{-l} \in \Sigma(\infty)$. Подумайте почему $\Sigma(\infty)$ разумно отождествить с пространством всех локальных квантовых теорий поля?

Определение 4: Фиксированной точкой называется такое действие \mathcal{A}_* , для которого верно

$$B\{\mathcal{A}_*\} = 0. \tag{0.9}$$

Упражнение 3: Покажите, что для фиксированной точки мы можем иметь либо $R_c = 0$, либо $R_c = \infty$.

Определение 5: Фиксированная точка с $R_c = \infty$ называется "критической" фиксированной точкой.

Упражнение 4: Предположим, что есть только две фиксированные точки в пространстве Σ , одна P_0 с $R_c = 0$, а другая P_∞ с $R_c = \infty$. Очевидно, что $P_\infty \in \Sigma_c$. Почему любая ренормгрупповая траектория, начинающаяся из какой-либо точки Σ с конечным R_c , будет приходить в P_0 ? Почему траектории которые начинаются из точек в Σ_c будут идти вдоль Σ_c ? Теперь пусть есть реноргрупповая траектория U, которая соединяет точки P_∞ и P_0 . Подумайте почему в данном случае $U = \Sigma(\infty)$?

Определение 6: $\{\mathcal{O}_{\alpha}\}$ обозначает пространство всех локальных композитных полей: $\{\mathcal{O}_{\alpha}\} = \{\varphi_0^{2n}, \varphi_0^{2n}(\partial \varphi_0)^2, ...\}$. Фактически мы можем записать общий вид квазилокального действия, как $\mathcal{A} = \int d^d x \sum_{\alpha} \lambda_{\alpha} \mathcal{O}_{\alpha}$, где $\{\lambda_{\alpha}\} = \{u_{2n}, v_{2n}, w_{2n+1}, ...\}$. В общем $\mathcal{O}_{\alpha}(x) = \mathcal{O}_{\alpha}(\varphi_0(x), \partial_{\mu}\varphi_0(x), ...)$ и является полиномом по φ_0 и его производным.

Упражнение 5: Покажите, что

$$\int D\tilde{\varphi} \mathcal{O}_{\alpha}(\varphi_{1}(x) + \tilde{\varphi}(x), \text{производные от } \varphi_{1} \text{ и } \tilde{\varphi}) e^{-\mathcal{A}[\varphi_{1} + \tilde{\varphi}]} =$$

$$= \sum_{\beta} y_{\alpha}^{\beta}(L) \mathcal{O}_{\beta}(\varphi_{1}(x), \text{производные от } \varphi_{1}) e^{-\mathcal{A}_{1}[\varphi_{1}]}. \tag{0.10}$$

Подумайте как вывести общую формулу

$$\langle \mathcal{O}_{\alpha}(x)...\rangle|_{\mathcal{A}} = \langle \sum_{\beta} z_{\alpha}^{\beta}(L)\mathcal{O}_{\beta}(x/L)...\rangle|_{\mathcal{A}'},$$
 (0.11)

где $z_{\alpha}^{\beta}(L)$ связанны с $y_{\alpha}^{\beta}(L)$ формулой

$$z_{\alpha}^{\beta}(L)\mathcal{O}_{\beta}\left(\varphi_{0}(x/L), \frac{\partial}{\partial(x^{a}/L)}\varphi_{0}(x/L), \ldots\right) = y_{\alpha}^{\beta}(L)\mathcal{O}_{\beta}(Z^{-1/2}(L)\varphi_{0}(x/L), Z^{-1/2}(L)\frac{\partial}{\partial x^{\mu}}\varphi_{0}(x/L), \ldots). \tag{0.12}$$

Упражнение 6: Пользуясь формулой (0.11), покажите, что в случае фиксированной точки \mathcal{A}_* , коэффициенты $z_{\alpha}^{\beta}(l)$ ($l = \log L$) удовлетворяют уравнению

$$z_{\alpha}^{\beta}(l+l') = \sum_{\gamma} z_{\alpha}^{\gamma}(l') z_{\gamma}^{\beta}(l), \qquad (0.13)$$

и выведите дифференциальное уравнение по l для $z_{lpha}^{eta}(l).$

Упражнение 7: Обозначим за Φ_{α} такую линейную комбинацию \mathcal{O}_{α} , для которой $z_{\alpha}^{\beta}(l)=z_{\alpha}(l)\delta_{\alpha}^{\beta}$. Найдите $z_{\alpha}(l)$, используя уравнение (0.13), а также покажите, что $\langle \Phi_{\alpha}(x)\Phi_{\beta}(x')\rangle|_{\mathcal{A}_{*}}\sim|x-x'|^{D_{\alpha}+D_{\beta}}$.