Комплексный анализ — Семинар №3 — 27 февраля 2015

- **1.** Вычислить $\int_{\gamma} (x^2 + iy^2) dz$, где $\gamma(t) = t^2 + it$, $t \in [0, 1]$.
- **2.** Пусть $z \in \mathbb{C} \setminus \{0\}$ и $\lambda \in \text{Ln}(z)$. Построить путь $\gamma \colon [0,1] \to \mathbb{C}$ с началом в точке 1 и концом в точке z (то есть $\gamma(0) = 1, \ \gamma(1) = z$) такой, что $\int_{\mathbb{R}} \frac{1}{z} dz = \lambda$.
- 3. Пусть f вещественно дифференцируемая в окрестности 0 функция. Доказать, что

$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon^2} \int_{|z| = \varepsilon} f(z) dz = 2\pi i f'_{\overline{z}}(0).$$

- **4.** Найти первообразные для следующих функций: а) $z^2 \operatorname{ch} az$, б) $e^{az} \cos bz$.
- **5.** Напомним, что $\int_{-\pi}^{+\infty} e^{-x^2} dx = \sqrt{\pi}$. Вычислить

а)
$$\int_{-\infty}^{+\infty} e^{-x^2} \cos ax dx$$
, где $a \in \mathbb{R}$; б) $\int_{0}^{+\infty} \cos x^2 dx$ и $\int_{0}^{+\infty} \sin x^2 dx$.

- 6. Пусть $D=D(0,R),\,f\in Hol(D)\cap C(\overline{D}).$ Вычислить $\iint_{r\leqslant |z|\leqslant R}f(z)dxdy.$
- 7. Пусть $D=D(0,R),\,f\in Hol(D)\cap C(\overline{D})$ и $M=\max_{|z|=R}|f(z)|$. Доказать, что при $n\in\mathbb{N}\cup\{0\}$ и |z|< R справедливы неравенства:

$$\left|\frac{f^{(n)}(z)}{n!}\right|\leqslant \frac{MR}{(R-|z|)^{n+1}}, \qquad |f'(z)|\leqslant \frac{MR}{R^2-|z|^2}.$$

- **8.** Пусть f целая функция ($f \in Hol(\mathbb{C})$) и для всех $z \in \mathbb{C}$ выполнена оценка $|f(z)| \leqslant C(1+|z|)^p$, где C и p>0 фиксированные константы. Доказать, что f полином степени не выше p.
- 9*. Пусть функция u голоморфна в некоторой области G, а ряд $\sum_{k=1}^{\infty} |c_k|$ сходится. Доказать, что $\frac{\infty}{2}$

произведение $\prod_{1}^{\infty} (1 + c_k u(z))$ сходится в G к голоморфной функции.

- **10.** Пусть $P(z) = z^n + \ldots$ полином степени n с единичным старшим коэффициентом. Доказать, что если $\max_{|z|=1} |P(z)| \leqslant 1$, то $P(z) = z^n$.
- **11.** Пусть G некоторая область в \mathbb{C} , а $f_1, \ldots, f_m \in Hol(G)$. Положим

$$M:=\limsup_{z\to\partial G}(|f(z_1)|+\cdots+|f(z_m)|).$$

Показать, что если хотя бы одна функция f_k — не тождественная константа, то для любой точки $z \in G$ выполнено $|f_1(z)| + \cdots + |f_m(z)| < M$.

- **12.** Пусть $\gamma(t)\colon [0,1] \to \mathbb{C}$ замкнутая жорданова кривая (точнее, некоторая ее параметризация), внутренность которой содержит точку 0. Пусть $z_0 = \gamma(0) = \gamma(1)$. Рассмотрим какую-нибудь непрерывную ветвь L(z) функции $\operatorname{Ln} z$ вдоль γ . Вычислить $\int_{\gamma} f'(z) L(z) dz$.
- **13.** Вычислив и оценив интеграл $\int_{|z|=R} \frac{f(z)}{(z-a)(z-b)} dz$ при |a| < R и |b| < R доказать теорему Лиувилля: ограниченная и голоморфная функция в $\mathbb C$ является константой.
- **14.** Пусть $f \in Hol(G)$ и $a_1, \ldots, a_n \in G$. Положим $\omega(z) = (z a_1) \cdot \ldots \cdot (z a_n)$ и определим

$$P(z) := \frac{1}{2\pi i} \int_{\partial G} \frac{f(\xi)}{\omega(\xi)} \frac{\omega(\xi) - \omega(z)}{\xi - z} d\xi.$$

Доказать, что P(z) — полином степени n-1 и $P(a_i)=f(a_i)$.