Комплексный анализ — Семинар №7 — 27 марта 2015

- 1. Доказать, что функция $az^2 + bz + c$ однолистна в выпуклой области в том и только том случае, когда она локально однолистна в этой области.
- **2.** Пусть $f \in Hol(\overline{G})$, где G некоторая область, пусть f непостоянна в G, и пусть модуль f имеет одно и то же значение на ∂G . Доказать, что однолистность f в G эквивалентна ее локальной однолистности в G.
- **3.** Пусть $-\infty < a_1 < a_2 < \dots < a_n < +\infty$. Доказать, что любая голоморфная ветвь функции $\sqrt[n]{(z-a_1)\cdots(z-a_n)}$ в верхней полуплоскости \mathbb{C}_+ однолистна в \mathbb{C}_+ .
- **4.** Пусть G жорданова область в $\mathbb C$, а f некоторое конформное отображение $\mathbb D$ на G. Доказать, что для любого $\varepsilon>0$ найдется однолистный в круге $\mathbb D$ многочлен P такой, что $\|f-P\|_{\overline{\mathbb D}}<\varepsilon$.
- **5.** Пусть последовательность $\{a_n\}_{n=2}^{\infty}$ такова, что $\sum_{n=2}^{\infty}n|a_n|<1$. Доказать, что функция $f(z)=z+\sum_{n=2}^{\infty}a_nz^n$ конформно отображает круг $\mathbb D$ на некоторую жорданову область.
- **6.** Пусть функция f конформно отображает круг $\mathbb D$ на некоторую ограниченную область. Доказать, что $(1-|z|)|f'(z)|\to 0$ при $|z|\to 1$.
- 7. Пусть функция f однолистна в круге \mathbb{D} , пусть f(0)=0, и пусть f не принимает значение $c\in\mathbb{C}$. Доказать, что при $z\in\mathbb{D}$ выполнено

$$|f(z)| \le \frac{4|cz|}{(1-|z|)^2}.$$

- 8. Пусть G область в \mathbb{C} , а функция f мероморфна в области G. а) Доказать, что если при отображении $z\mapsto f(z)$ образом любого отрезка, лежащего в области G, является отрезок, то f линейная функция. б) Доказать, что если при отображении $z\mapsto f(z)$ образом любого отрезка, лежащего в области G, является отрезок или дуга окружности, то f ДЛО.
- **9.** Найти какую-либо максимальную область конформности для функции a) $\sinh z^2$, б) Ж(tg z), где Ж(z) функция Жуковского, в) Ж((Ж(z))²). Указать образы найденных областей и соответствие границ.
- **10.** Найти образы областей G при отображении указанными функциями: а) $G=\{\operatorname{Re} z>0,\ -1<\operatorname{Im} z<1\},\ w=\cosh\pi z;\ б)\ G=\{\operatorname{Re} z>0,\ \operatorname{Im} z>0\},\ w=\ln(z+\sqrt{z^2+1}),\ w(2)>0;\ в)\ G=\{(\operatorname{Im} z)^2-(\operatorname{Re} z)^2<\frac{1}{2}\},\ w=\ln(z+\sqrt{z^2+1}),\ w(0)=2\pi i.$
- **11.** Найти какие-либо конформные отображения областей, изображенных на рисунках (см. на обороте) на единичный круг.
- **12.** а) Конформно отобразить круг $\{|z-2i|<2\}$ с разрезами [0,2ti) и [(4-s)i,4i), $t,s\in[0,1]$, на этот же круг без разрезов со следующим соответствием границ: $2ti\mapsto 0, (4-s)i\mapsto 4i, 2+2i\mapsto 2+2i.$ б) Конформно отобразить область $\{\operatorname{Im} z>0,\ |z|>2\}$ с разрезом $(2i,(2+t)i],\ t\in[0,1],$ на эту же область со следующим соответствием границ: $(2+t)i\mapsto 2i,\ 0\mapsto 0,\ 2\mapsto 2.$ Проследить динамику устранения разрезов при $t\to 0$ и $s\to 0.$
- **13***. Пусть функция $g(z) = z + b_0 + b_1 z^{-1} + \cdots$ голоморфна в $\{1 < |z| < \infty\}$ и непрерывна в $\{1 \le |z| < \infty\}$. Пусть Γ жорданова кривая в \mathbb{C} . Доказать, что если $g(\mathbb{T}) \subset \Gamma$ и g не принимает хотя бы одно значение из $\mathbb{C} \setminus \Gamma$, то g отображает область $\{1 < |z| < \infty\}$ конформно на область $D_{\infty}(\Gamma)$ (неограниченную компоненту множества $\mathbb{C} \setminus \Gamma$).
- **14***. Доказать теорему Литтлвуда: для любой функции $f = z + \sum_{n=2}^{\infty} a_n z^n$ класса \mathcal{S} справедливы оценки $|a_n| < en, \, n=2,3\dots$

