Топология-1, семинар 5, 09.03.2015.

Задача 1. Используя клеточное разбиение сферы с g ручками, покажите, что любая сфера с g ручками с выколотой точкой гомотопически эквивалентна букету окружностей. Найдите число окружностей в букете.

Задача 2. Используя построенное в лекции клеточное разбиение пространств $\mathbb{R}P^n$ и $\mathbb{C}P^n$, докажите, что

- (1) $\mathbb{R}P^n$ с выколотой точкой гомотопически эквивалентно $\mathbb{R}P^{n-1}$.
- (2) $\mathbb{C}P^n$ с выколотой точкой гомотопически эквивалентно $\mathbb{C}P^{n-1}$.

Задача 3. Используя теорему о клеточной аппроксимации, докажите, что клеточный комплекс линейно связен тогда и только тогда, когда линейно связен его 1-остов.

Задача 4. Докажите, что а) одномерный б) произвольный клеточный комплекс связен тогда и только тогда, когда он линейно связен.

Задача 5. (многообразия Грассмана). Рассмотрим множество всех вещественных k-мерных плоскостей в пространстве \mathbb{R}^n и покажем, что оно естественным образом наделяется структурой клеточного пространства. Выберем *полный флаг* в пространстве \mathbb{R}^n – последовательность вложенных пространств $\mathbb{R}^0 \subset \mathbb{R}^1 \subset \ldots \subset \mathbb{R}^n$. Для данной плоскости $L^k \subset \mathbb{R}^n$ положим $l_i = \dim(L^k \cap \mathbb{R}^i), \ i = 1 \ldots n$. Ясно, что $l_n = k, \ l_i \leqslant k, \ l_i \leqslant i \ u \ l_i \leqslant l_{i+1}$. Множество всех плоскостей $L^k \subset \mathbb{R}^k$, отвечающих данной последовательности (l_1, \ldots, l_n) , называется *клеткой Шуберта*.

- (1) Покажите, что $l_{i+1} l_i \leq 1$.
- (2) Найдите размерность клетки Шуберта, соответствующей последовательности (l_1, \ldots, l_n) , отождествив ее с подходящим евклидовым пространством.
- (3) Покажите, что максимальная размерность клетки Шуберта равна k(n-k).
- (4) Постройте клеточное разбиение многообразия Грассмана, состоящее из клеток Шуберта. Убедитесь, что конструкция обобщается на многообразие Грассмана комплексных плоскостей $L^k \subset \mathbb{C}^n$.