
THE TOPOLOGY OF SUBSETS OF Rn

The basic material of this lecture should be familiar to you from Advanced
Calculus courses, but we shall revise it in detail to ensure that you are comfortable
with its main notions (thе notions of open set and continuous map) and know
how to work with them.

1.1. Continuous maps

“Topology is the mathematics of continuity”

Let R be the set of real numbers. A function f : R→ R is called continuous
at the point x0 ∈ R if for any ε > 0 there exists a δ > 0 such that the inequality

|f(x0)− f(x)| < ε

holds for all x ∈ R whenever |x0 − x| < δ. The function f is called continuous
if it is continuous at all points x ∈ R.

This is basic one-variable calculus.

Let Rn be n-dimensional space. By Or(p) denote the open ball of radius
r > 0 and center p ∈ Rn, i.e., the set

Or(p) := {q ∈ Rn | d(p, q) < r},

where d is the distance in Rn. A function f : Rn → R is called continuous at the
point p0 ∈ Rn if for any ε > 0 there exists a δ > 0 such that f(p) ∈ Oε( f(p0))
for all p ∈ Oδ(p0). The function f is called continuous if it is continuous at all
points p ∈ Rn.

This is (more advanced) calculus in several variables.

A set G ⊂ Rn is called open in Rn if for any point g ∈ G there exists a
δ > 0 such that Oδ(g) ⊂ G. Let X ⊂ Rn. A subset U ⊂ X is called open
in X if for any point u ∈ U there exists a δ > 0 such that Oδ(u) ∩ X ⊂ U .
An equivalent property: U = V ∩ X, where V is an open set in Rn. Clearly,
any union of open sets is open and any finite intersection of open sets is open.
Let X and Y be subsets of Rn. A map f : X → Y is called continuous if the
preimage of any open set is an open set, i.e.,

V is open in Y =⇒ f−1(V ) is open in X.

This is basic topology.

Let us compare the three definitions of continuity. Clearly, the topological
definition is not only the shortest, but is conceptually the simplest. Also, the
topological definition yields the simplest proofs. Here is an example.
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Theorem 1.1. The composition of continuous maps is a continuous map.
In more detail, if X, Y , Z are subsets of Rn, f : X → Y and g : Y → Z are
continuous maps, then their composition, i.e., the map h = g ◦ f : X → Z
given by h(x) := g( f(x)), is continuous.

Proof. Let W ⊂ Z be open. Then the set V := f−1(W ) ⊂ Y is open
(because f is continuous). Therefore, the set U := g−1(V ) ⊂ X is open
(because g is continuous). But U = h−1(W ). �

Compare this proof with the proof of the corresponding theorem in basic
calculus. This proof is much simpler.

The notion of open set, used to define continuity, is fundamental in topology.
Other basic notions (neighborhood, closed set, closure, interior, boundary,
compactness, path connectedness, etc.) are defined by using open sets.

1.2. Closure, boundary, interior

By a neighborhood of a point x ∈ X ⊂ Rn we mean any open set (in X)
that contains x.

LetA ⊂ X; an interior point ofA is a point x ∈ A which has a neighborhood
U in X contained in A. The set of all interior points of A is called the interior
of A in X and is denoted by Int(A). An isolated point of A in X is a point
a ∈ A which has a neighborhood U in X such that U ∩ A = a.

A boundary point of A in X is a point x ∈ X such that any neighborhood
U 3 x in X contains points of A and points not in A, i.e., U ∩ A 6= ∅ and
U ∩ (X − A) 6= ∅; the boundary of A is denoted by Bd(A) or ∂A. The union
of A and all the boundary points of A is called the closure of A in X and is
denoted by Clos(A,X) (or Clos(A), or A, if X is clear from the context).

Theorem 1.2. Let A ⊂ Rn.

(a) A is closed if and only if it contains all of its boundary points.

(b) The interior of A is the largest (by inclusion) open set contained in A.

(c) The closure of A is the smallest (by inclusion) closed set containing A.

(d) The boundary of a set A is the difference between the closure of A and
the interior of A: Bd(A) =Clos(A)−Int(A).

The proofs is follow directly from the definitions, and you should remember
them from the Calculus course. You be able to write them up without much
trouble in the exercise class.
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1.3. Topological equivalence

“A topologist is person who can’t tell the difference
between a coffee cup and a doughnut.”

The goal of this subsection is to teach you to visualize objects (geometric
figures) the way topologists see them, i.e., by regarding figures as equivalent if
they can be bijectively deformed into each other. This is something you have
not been taught to do in calculus courses, and it may take you some time
before you will become able to do it.

Let X and Y be “geometric figures,” i.e., arbitrary subsets of Rn. Then
X and Y are called topologically equivalent or homeomorphic if there exists a
homeomorphism of X onto Y , i.e., a continuous bijective map h : X → Y such
that the inverse map h−1 is continuous.

For the topologist, homeomorphic figures are the same figure: a circle is the
same as (the boundary of) a square, or a triangle, or a hexagon, or an ellipse;
an arc of a circle is the same as a closed interval, a 2-dimensional disk is the
same as one of its segments or as a triangle together with its inner points; the
boundary of a cube is the same as a sphere, or as (the boundary of) a cylinder,
or (the boundary of) a tetrahedron.

If a property does not change under any homeomorphism, then this property
is called topological. Examples of topological properties are compactness and
path connectedness (they will be defined later in this lecture). Examples of
properties that are not topological are length, area, volume, and boundedness.
The fact that boundedness is not a topological property may seem rather
surprising; as an illustration, we shall prove that

the open interval (0, 1) is homeomorphic to the real line R (!)

This is proved by constructing an explicit homeomorphism h : (0, 1) → R as
the composition of the two homeomorphisms p and s shown in Figure 1.1.

Figure 1.1. The homeomorphism h : (0, 1)→ R
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For another illustration, look at Figure 1.2; you should intuitively feel that
the torus is not homeomorphic to the sphere (although we are at present
unable to prove this!). However, the ordinary torus is homeomorphic to the
knotted torus in the figure, although they look “topologically very different”;
they provide examples of figures that are homeomorphic, but are embedded in
R3 in different ways. We shall come back to this distinction later in the course,
in particular in the lecture on knot theory.

Figure 1.2. The sphere and two tori

We conclude this lecture by studying two basic topological properties of
geometric figures that will be constantly used in this course.

1.4. Path connectedness

A set X ⊂ Rn is called path connected if any two points of X can be joined
by a path, i.e., if for any x, y ∈ X there exists a continuous map ϕ : [0, 1]→ X
such that ϕ(0) = x and ϕ(1) = y.

Theorem 1.3. The continuous image of a path connected set is path
connected. In more detail, if the map f : X → Y is continuous and X is
path connected, then f(X) is path connected.

Proof. Let y1, y2 ∈ f(X). Let X1 := f−1(y1) and X2 := f−1(y2). Let x1
and x2 be arbitrary points of X1 and X2, respectively. Then there exists a
continuous map ϕ : [0, 1]→ X such that ϕ(0) = x1 and ϕ(1) = x2 (because X
is path connected). Let ψ : [0, 1]→ f(X) be defined by ψ := f ◦ ϕ. Then ψ is
continuous (by Theorem 1.1), ψ(0) = y1 and ψ(1) = y2. �

Thus we have shown that path connectedness is a topological property.

1.5. Compactness

A family {Uα} of open sets in X ⊂ Rn is called an open cover of X if this
family covers X, i.e., if ∪α Uα ⊃ X. A subcover of {Uα} is a subfamily {Uαβ}
such that ∪β Uαβ ⊃ X, i.e., the subfamily also covers X. The set X is called
compact if every open cover of X contains a finite subcover.
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Note the importance of the word “every” in the last definition: a set in
noncompact if at least one of its open covers contains no finite subcover of X.
As an illustration, let us show that

the open interval (0, 1) is not compact.
Indeed, this follows from the fact that any finite subfamily of the cover

{
U1, U2, . . .

}
shown in Figure 1.3 obviously does not cover (0, 1).

Figure 1.3. The open interval (0, 1) is not compact

Theorem 1.4. The continuous image of a compact set is compact, i.e., if a
map f : X → Y is continuous and X ⊂ Rn is compact, then f(X) is compact.

Proof. Let {Vα be an open covering of f(X). Then each Uα; = f−1(Vα) is
open in X (by the definition of continuity) and so {Uα} is an open covering of
X. ButX is compact, hence {Uα} has a finite subcovering, say

{
Uα1 , . . . , UαN

}
.

Then
{
f(Uα1), . . . , f(UαN )

}
is obviously a finite subcover of {Vα}. �

Thus we have shown that compactness is a topological property.

Fact 1.5. A set X ⊂ Rn is compact if and only if X is closed and bounded.
We do not give the proof of this fact because it not really topological: the

word “bounded” makes no sense to a topologist; the proof is usually given in
calculus courses.
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1.6. Exercises

1.1. Using the ε–δ definition of continuity, give a detailed proof of the fact
that the composition of two continuous functions is continuous.

1.2. Let F : R2 → R. Suppose the functions f1,x0(y) := F (x0, y) and
f2,y0(x) := F (x, y0) are continues for any x0, y0 ∈ R. Is it true that F (x, y) is
continuous?

1.3. Prove the four assertions (a)-(d) of Theorem 1.1.
1.4. The towns A and B are connected by two roads. Two travellers can

walk along these roads from A to B so that the distance between them at any
moment is less than or equal to 1 km. Can one traveller walk from A to B and
the other from B to A (using these roads) so that the distance between them
at any moment is greater than 1 km?

1.5. Suppose A ⊂ Rn and x ∈ Rn. The distance from the point x to the
subset A is equal to d(x,A) = inf{‖x− a‖ : a ∈ A}.

(i) Prove that the function f(x) = d(x,A) is continuous for any A ⊂ Rn.
(ii) Prove that if the set A is closed, then the function f(x) = d(x,A) is

positive for any x 6∈ A.
1.6. Let X be the subset of R2 given by the equation xy = 0 (X is the

union of two lines). Give some examples of neighborhoods: (a) of the point
(0, 0); (b) of the point (0, 1).

1.7. Describe the set of points x in R2 such that d(x,A) = 1; 2; 3, where
the set A is given by the formula:

(a) x2 + y2 = 0; (b) x2 + y2 = 2;
(c)* x2 + 2y2 = 2; (d) the square of area two.
1.8. Let A and B be two subsets of the set X that was defined in Exercise

1.7. Suppose that A and B are homeomorphic and A is open in X. Is it true
that B is also open in X?

1.9. Construct a homeomorphism between the boundary of the cube I3 and
the sphere S2.

1.10. Construct a homeomorphism between the plane R2 and the open
disk B2 := {v ∈ R2 : |v| < 1}.

1.11. Construct a homeomorphism between the plane R2 and the sphere
S2 with one point removed.


