
Lecture 9

CURVES IN THE PLANE

In this lecture we study curves and points lying in the plane R2 and introduce two
important invariants: the Whitney index of a curve w(γ) and the degree of a point with
respect to a curve deg(p, γ). The Whitney index will allow us to classify curves immersed
in the plane up to regular homotopy and the degree of a point with respect to a curve
will help us prove the so-called “Fundamental Theorem of Algebra”.

9.1. Regular Curves and Regular Homotopy

A closed curve f : S1 → R2 is called regular if it has a continuously changing nonzero
tangent vector at each point; this means that for any s ∈ S1 there exists a neighborhood
U ⊂ S1, s ∈ U , such that the restriction f |U defines the graph of a continuously
differentiable function in some coordinate system in R2 and this graph has a nonzero
tangent vector at the point f(s). Note that a regular curve can have self-intersection
points and even “overlaps”, i.e., its image f(S1) may contain intervals that are the image
of disjoint intervals of S1, f(U) = f(V ), U ∩ V = ∅.

A regular homotopy of a curve f : S1 → S2 is a homotopy of this curve (i.e., a map
F : S1 × [0, 1] → R2 satisfying F (s, 0) = f(s) for all s ∈ S1) that determines a regular
curve for each t ∈ [0, 1] (i.e., the curve F (s, t0) is regular for any fixed t0 ∈ [0, 1]). Note
that the “disappearance of a little loop”, which can occur in a homotopy (see Fig. 9.1), is
impossible in a regular homotopy (why?).

Figure 9.1. Disappearance of a little loop

9.2. Immersed Curves and Regular Homotopy

An immersed curve is a regular curve which is generic in the sense that its singular points
cannot be destroyed by arbitrarily small changes. The exact definition is the following. A
regular curve f : S1 → R2 is said to be an immersion if f is not a bijection at only a finite
number of points dj, and these points are transversal double points, i.e., their preimages
are pairs of points and the two tangent vectors at each dj are linearly independent.

Our aim is to classify immersed curves in the plane up to regular homotopy. This will
be done by using an invariant defined in the next section.
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9.3. The Whitney Index

The Whitney index (or winding number) w(f) of a regular curve f : S1 → R2 (not
necessarily immersed) is defined as the degree of the Gauss map γdf : S1 → S1 determined
by the tangent vector to the curve; this means that γdf is obtained by parallel translation
of the mobile tangent vector df(ϕ) to the origin and normalizing it, and then letting ϕ
vary from 0 to 2π.

There is a simple practical method for computing w(f) for an immersed curve f : we
consider all the horizontal tangent vectors to f and assume that there is a finite number
of them, then we count the number of these vectors of different types and combine these
numbers in the appropriate way. For the details, see the exercise class.

Clearly, the Whitney index w(f) is an invariant of regular homotopy (because it is
continuous and integer-valued).

9.4. Classification of Immersed Curves

In our classification we will ignore orientation, i.e., will not distinguish a curve f from
the curve f◦ sym, where sym is the symmetry of S1 with respect to a diameter. This
classification is given by the following theorem.

Theorem 9.1. [H. Whitney, 1928.] Any immersed curve (up to orientation) is regularly
homotopic to exactly one of the following curves: the “figure eight curve”, the circle, the
circle with one small loop inside it, the circle with two small loops inside it, . . . , the circle
with n small loops inside it, and so on.

Figure 9.2. Classification of immersed curves

Proof. As usual for classification theorems, the proof is in two parts – one geometric, the
other algebraic. In the geometric part, we construct a regular homotopy taking an arbitrary
immersed curve to one of the curves listed in the theorem; we sketch this construction
below (the details will be done in the exercise class). The second part consists in showing
that the curves in the list are pairwise nonhomotopic; this is done by computing their
Whitney indices; it turns out that they are all different (Exercise 9.10).

Let γ be the given immersed curve. We define a simple loop ω as a part of γ that starts
and ends at a double point of γ and has no self-intersections (however, it can intersect
other parts of γ).

First we prove that any immersed curve with self-intersections has a simple loop (Exercise
9.7).
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Next we show that there is a homotopy after which all the simple loops do not intersect
other parts of γ (Exercise 9.8)..

Finally we use the homotopies shown in Figure 9.2 (Exercises 9.3 and 9.4) to conclude
the proof of the theorem (Exercise 9.5).

Figure 9.3. Two useful homotopies

Theorem 9.2. [The Whitney Theorem for the Sphere.] Any immersed curve in the
sphere is regularly homotopic to the circle or to the “figure eight curve”.

Note that here we do not classify “up to orientation” as in the previous theorem, but
the classification “up to orientation” will be the same (why?). Concerning the proof, see
the exercise class (Exercise 9.6).

9.5. Degree of a Point with Respect to a Curve

Consider an immersed curve f : S1 → R2 and a point p ∈ R2 in its complement,
p /∈ f(S1). Let ϕ ∈ [0, 2π) be the angular parameter on S1 and Vϕ be the vector joining
the points p and f(ϕ). As ϕ varies from 0 to 2π, the unit vector Vϕ/|Vϕ| moves along the
unit circle S0 centered at p, defining a map γf : S0 → S0. The degree of the point p with
respect to the curve f is defined as the degree of the circle map γf , i.e., deg(p, f) := deg(γf ).

It is easy to prove that deg(p, f) does not change when p varies inside a connected
component of R2 \ f(S1) (Exercise 9.7). If the point p is “far from” f(S1) (i.e., in the
connected component of R2\f(S1) with noncompact closure), then deg(p, f) = 0 (Exercise
9.8).

Remark 9.2. There is a convenient method for computing the degree of any point p in
the case when the curve f is immersed: join p by a (nonclosed) curve α in general position
to a far away point a and move from a to p along that curve, adding one to the degree
when you cross f(S1) in the positive direction (i.e., so that the tangent vector looks to the
right) and subtracting one when you cross it in the negative direction. The proof of the
fact that you will always (independently of the choice of α) obtain deg(p, f) when your
reach p is the object of Exercise 9.9.
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9.6. The “Fundamental Theorem of Algebra”

The Fundamental Theorem of Algebra says that any polynomial
p(z) = anz

n + an−1z
n−1 + · · ·+ a1z + a0, an 6= 0, n > 0,

has at least one (possibly complex) root; here the coefficients ai may be real or complex.
We will prove this theorem assuming that an = 1 and a0 6= 0; this does not restrict
generality (why?).

Consider the curve fn : S1 → R2 given by the formula eiϕ 7→ Rn
0e

inϕ, where R0 is a
(large) positive number that will be fixed later. Further, consider the family of curves
fp,R : S1 → R2 given by the formula

eiϕ 7→ p(Reiϕ), where R ≤ R0.

We can assume that the origin O does not belong to fp,R0(S
1) (otherwise the theorem is

proved).
Lemma 9.1. If R0 is large enough, then deg(O, fp,R0) = deg(O, fn) = n.
Before proving the lemma, let us show that it implies the theorem.
By the lemma, deg(O, fp,R0) = n. Let us continuously decrease R from R0 to 0. If for

some value of R the curve fp,R(S1) passes through the origin, the theorem is proved. So
we can assume that deg(O, fp,R) changes continuously as R → 0; but since the degree is
an integer, it remains constant and equal to n. However, if R is small enough, the curve
fp,R(S1) lies in a small neighborhood of a0; but for such an R we have deg(O, fp,R) = 0.
This is a contradiction, because n ≥ 1.

It remains to prove the lemma. The equality deg(O, fn) = n is obvious. To prove the
other equality, it suffices to show that for any ϕ the difference ∆ between the vectors Vp(ϕ)
and Vn(ϕ) that join the origin O with the points fp(R0e

iϕ) and fn(R0e
iϕ), respectively, is

small in absolute value (as compared to Rn
0 = |Vp(ϕ)|) if R0 is large enough. Indeed, by

the definition of degree, if the mobile vector is replaced by another mobile vector whose
direction always differs from the direction of the first one by less than π/2, the degree will
be the same for the two vectors.

Clearly, |∆| = |an−1z
n−1+· · ·+a1z+a0|. Let us estimate this number, putting z = R0e

ϕ

(we assume that R0 > 1) and A = max{an−1, an−2, . . . , a0}. We have
|an−1z

n−1 + · · ·+ a1z + a0| ≤ |A(Rn−1
0 +Rn−2

0 + · · ·+ 1)| ≤ A · n ·Rn−1
0 .

Now if we put R0 := K · A, where K is a large positive number, we will obtain
|∆| ≤ nA(KA)n−1 = nKn−1An.

Let us compare this quantity to Rn
0 ; the latter equals Rn

0 = KnAn, so for K large enough
the ratio |∆|/Rn

0 is as small as we wish. This proves the lemma and concludes the proof
of the theorem.
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9.7. Exercises

9.1. Prove that any immersed curve with self-intersections has at least one simple loop.
9.2. Prove that for any simple loop ω of an immersed curve γ there exists a regular

homotopy which changes only ω and replaces ω by a new simple loop that does not
intersect other parts of γ.
9.3. Prove that the immersed curve shown on the left in Fig. 9.2 is regularly homotopic

to the circle.
9.4. Prove that the immersed curve shown on the right in Fig. 9.2 is regularly homotopic

to the circle.
9.5. Using the results of Exercises 9.1-9.4, prove the Whitney Theorem.
9.6. Prove the Whitney Theorem for the sphere.
9.7. Prove that deg(p, f) does not change when p varies inside a connected component

of R2 \ f(S1).
9.8. Prove that if the point p is “far from” f(S1) (i.e., in the connected component of

R2 \ f(S1) with noncompact closure), then deg(p, f) = 0.
9.9. Prove that the algorithm described in Remark 9.1 finds an integer d (which is

independent of the choice of the curve α) and this integer is the degree: deg(p, f) = d.
9.10. Compute the Whitney index of the curves shown on Figure 9.1.


