Топология-3, семинар 5, 10.03.2017.

Задача 1. (а) Докажите, что характеристические классы Черна и Штифеля-Уитни стабильны, т.е. если ξ — векторное расслоение над X, а \mathbb{R}^k — тривиальное векторное расслоение, то $w_i(\xi \oplus \mathbb{R}^k) = w_i(\xi)$ и аналогично для c_i . (б) Докажите, что естественное вложение группы $U(n) \hookrightarrow U(n+k)$ индуцирует следующий гомоморфизм в когомологиях классифицирующих пространств:

$$H^*(BU(n+k); \mathbb{Z}) \cong \mathbb{Z}[c_1, \dots, c_{n+k}] \to H^*(BU(n); \mathbb{Z}) \cong \mathbb{Z}[c_1, \dots, c_n];$$

 $c_1 \mapsto c_1, \dots, c_n \mapsto c_n, c_{n+1} \mapsto 0, \dots, c_{n+k} \mapsto 0.$

Задача 2. Пусть η — произвольное векторное расслоение с базой $X = \bigcap_{\alpha} U_{\alpha}$, и пусть $\psi_{\alpha,\beta}(x) \in O(n), x \in U_{\alpha} \cap U_{\beta}$ — функции перехода этого расслоения. Рассмотрим одномерное векторное расслоение, функции перехода которого суть $\det \eta_{\alpha,\beta}(x) \in \{\pm 1\}$. Такое расслоение называется детерминантным расслоением для расслоения η и обозначается $\det \eta$. Докажите, что η ориентируемо в том и только том случае, когда $\det \eta$ тривиально. Сформулируйте и докажите аналог этого факта для комплексных расслоений.

Задача 3. Пусть η — произвольное векторное расслоение с (пара)компактной базой X. Тогда существует такое пространство Y и такое отображение $p\colon Y\to X$, что (1) $p^*\colon H^*(X;R)\to H^*(Y;R)$ инъективно, (2) расслоение $p^*\eta$ есть прямая сумма одномерных векторных расслоений над Y. Как обычно, тут предполагается, что либо расслоения комплексные и $R=\mathbb{Z}$, либо расслоения вещественные и $R=\mathbb{Z}_2$. (Указание: в качестве пространства Y нужно взять "флагизацию" расслоения η , т.е. заменить каждый слой расслоения η на пространство полных флагов в этом слое).

Из этой теоремы выводится *принцип расщепления*: любое полиномиальное соотношение на классы Черна либо Штифеля—Уитни векторных расслоений достаточно доказывать в предположении, что они расщепляются в сумму одномерных.

- **Задача 4.** Пусть векторное расслоение η на X (для определенности пусть оно комплексное) классифицируется отображением $f\colon X\to BU(n)$, а расслоение ξ классифицируется отображением $g\colon X\to BU(k)$. Опишите отображение $X\to BU(nk)$, которое классифицирует расслоение $\eta\otimes \xi$.
- **Задача 5.** (1) В обозначениях предыдущей задачи описать классифицирующее отображение для $S^r\eta$, симметрической степени расслоения η . (2) Описать классифицирующее отображение для внешней степени $\Lambda^r\eta$. (3) Докажите, что старшая внешняя степень расслоения совпадает с его детерминантным расслоением.
- **Задача 6.*** Докажите, что вещественное векторное расслоение η ориентируемо тогда и только тогда, когда $w_1(\eta) = 0$.
- Задача 7.* Пусть SU(n) группа унитарных матриц с определителем 1. Доказать, что структурную группу комплексного расслоения ξ можно редуцировать к SU(n) тогда и только тогда, когда $c_1(\xi)=0$.