Листок 1. 8 февраля 2017

 $3 a \partial a$ ча 1. Нарисовать на плоскости множества а) $arg(1-z)=\frac{3}{4}\pi;$ б) $\bar{z}=iz^2;$ в) $\bar{z}=iz;$ г) $|\frac{z-2i}{z+4}|\geq 1;$ д) $\mathrm{Re}\,z^2>1;$ |z-2i+5|=1.

 $3a\partial a$ ча 2. Нарисовать на плоскости множества и их образы при отображениях: $\{z|0<\operatorname{Im} z<2\pi\},\ \{z|-\frac{\pi}{4}<\operatorname{Im} z\leq\frac{\pi}{2},\operatorname{Re} z<1\},\ z\mapsto e^z;$ $\{z|\operatorname{Im} z=\frac{\pi}{6}\},\ \{z|\operatorname{Re} z=\frac{\pi}{6}\},\ z\mapsto\sin z.$

 $3a\partial a + a \ 3$. В какие множества переводит отображение $z \mapsto \frac{az+b}{cz+d}$ прямые и окружности?

Задача 4. Опишите все дробно-линейные отображения, переводящие открытый единичный круг, полуплоскость, в себя?

 $3a\partial aчa$ 5. В каких точках непрерывны (дифференцируемы) функции Re $z,\ \bar{z},\ |z^2|,$ arg(z).

 $3a\partial a$ ча 6. Рассмотрим ряд $\sum\limits_{n\geq 0}a_nz^n$, коэффициенты которого определены рекуррентным соотношением: $a_{n+2}=aa_{n+1}+ba_n\ (a,b\in\mathbb{R}),\ a_0=0,\ a_1=1.$

- а) Докажите, что его радиус сходимости отличен от нуля.
- б) Найдите сумму этого ряда.

 $3a\partial a$ ча 7. Разложите функцию $\frac{1}{1+ix}$ в степенной ряд с центром в точке $a\in\mathbb{R}$. Найдите радиус сходимости этого ряда.

 ${\it 3adaчa}$ 8. Докажите, что $e^z=1+z+\frac{z^2}{2!}+\frac{z^3}{3!}+\dots$

 $3 a \partial a u a$ 9. Докажите, что $|e^z-1| \leq e^{|z|} - 1 \leq |z| e^{|z|}$ при любом z.