1. Найдите ошибку в рассуждении:

$$z^2 = (-z)^2 \Rightarrow \operatorname{Arg}(z^2) = \operatorname{Arg}\left((-z)^2\right) \Rightarrow 2\operatorname{Arg}z = 2\operatorname{Arg}(-z) \Rightarrow \operatorname{Arg}z = \operatorname{Arg}(-z) \Rightarrow \operatorname{Arg}i = \operatorname{Arg}(-i)$$
 (последнее утверждение в этой цепочке, очевидно, неверно).

- •2. (і) Доказать круговое свойство ДЛО и свойство сохранения симметрии относительно обобщенных окружностей при ДЛО. (ii) Доказать, что множество всех ДЛО образуют некоммутативную группу Λ относительно операции композиции отображений, изоморфную группе $PSL(2,\mathbb{C}) =$ $\mathrm{SL}(2,\mathbb{C})/\{\pm I\}$. Найти все сопряженные классы в группе Λ .
- **3.** Пусть ряд $\sum_{n=0}^{\infty} c_n z^n$ сходится в точке z=1, и пусть $0\leqslant \alpha\leqslant \pi/2$. Доказать, что этот ряд сходится равномерно в секторе $\{\pi-\alpha\leqslant\arg(z-1)\leqslant\pi+\alpha,\;|z-1|\leqslant\cos\alpha\}$.
- 4. Пусть $f(z) = \sum_{n=0}^{\infty} c_n z^n$, и пусть D(0,R), R > 0, круг сходимости соответствующего степенного ряда. Доказать, что если |f(z)| достигает локального максимума в точке z=0, то $f\equiv c_0$.
- **5.** Пусть $\alpha, \beta \in \mathbb{R}$, и пусть $c_0 = 0$, $c_1 = 1$, а $c_n = \alpha c_{n-1} + \beta c_{n-2}$ при $n \geqslant 2$. Доказать, что радиус сходимости ряда $\sum_{n=0}^{\infty} c_n z^n$ положителен, и найти сумму этого ряда.
- **6.** Доказать, что множество всех корней производной P'(z) произвольного многочлена P(z) = $a_0 \prod_{k=1}^n (z-z_k)$ лежат в выпуклой оболочке точек $z_k, k=1,\ldots,n$ (корней многочлена P).
- •7. Пусть f функция, голоморфная в некоторой области $G \subset \mathbb{C}$. Доказать, что если одна из следующих функций:

Re
$$f$$
; Im f ; $|f|$; arg f

постоянна в G, то и f постоянна в G.

8. Пусть f — голоморфная функция. Выразить через f и f' следующие функции:

$$\frac{\partial}{\partial z} \big(|f(z)| \big), \quad \frac{\partial}{\partial z} \big(\operatorname{Re} f(z) \big), \quad \frac{\partial}{\partial z} \big(\operatorname{Im} f(z) \big).$$

•9. Пусть функция f вещественно дифференцируема в точке z_0 . Доказать, что множество предельных значений выражения

$$\frac{f(z) - f(z_0)}{z - z_0}$$

 $\frac{f(z)-f(z_0)}{z-z_0}$ при $z\to z_0$ образует окружность с центром в точке $f_z'(z_0)$ и радиусом $|f_{\overline{z}}'(z_0)|$.

10. Найти все функции f класса $Hol(\mathbb{C})$, у которых |f| зависит только от $\operatorname{Re} z$, а $\operatorname{arg} f$ зависит только от Im z (например, e^z).