- **1.** а) Доказать, что функция $f(z) = \sqrt{z^2}$ распадается над всем $\mathbb C$ на две непрерывные ветви.
 - б) Проверить, что в области $\mathbb{C} \setminus \{0\}$ функция $\operatorname{Ln} z$ не имеет непрерывных ветвей.
- в) Описать все непрерывные ветви функции $\sqrt[n]{z}$ в области $\mathbb{C} \setminus \mathbb{R}_-$, где \mathbb{R}_- это отрицательная вещественная полуось.
- г) Пусть функция f голоморфна и однолистна в $\mathbb D$ и пусть f(0)=0. Доказать, что функция $\sqrt[n]{f(z^n)}$ распадается в $\mathbb D$ на n голоморфных и однолистных ветвей.
- •2. Найти какие-либо элементарные функции, конформно отображающие области, изображенных на рисунках (см. на обороте; необходимо решить 4 задания по своему выбору) на единичный круг.
- **3.** Конформно отобразить круг $\{|z-2i|<2\}$ с разрезами [0,2ti) и $[(4-s)i,4i),\,t,s\in[0,1],$ на этот же круг без разрезов со следующим соответствием границ: $2ti\mapsto 0,\,(4-s)i\mapsto 4i,\,2+2i\mapsto 2+2i.$ Проследить динамику устранения разрезов при $t\to 0$ и $s\to 0$.
- **4.** Доказать, что функция $az^2 + bz + c$ однолистна в выпуклой области в том и только том случае, когда она локально однолистна в этой области.
- •5. а) Доказать существование интеграла $\int_{\gamma} f \, dz$, где γ спрямляемый путь в \mathbb{C} , а f функция класса $C([\gamma])$.
 - б) Для пути $\gamma \colon [0,1] \to \mathbb{C}$ класса C^1 и для функции $f \in C([\gamma])$ доказать, что

$$\int_{\gamma} f \, dz = \int_{0}^{1} f(\gamma(t)) \gamma'(t) \, dt.$$

- **6.** а) Вычислить $\int_{\gamma_j} (x^2+iy^2)dz,\ j=1,2,$ где $\gamma_1(t)=t^2+it,$ а $\gamma_2(t)=t+it,$ $t\in[0,1];$
- б) Для произвольного пути γ , соединяющего точки 0 и 1 и не проходящего через $\pm i$, вычислить $\int \frac{dz}{1+z^2}$.
- •7. Пусть $D = D(0,R), \ f \in Hol(D) \cap C(\overline{D})$ и $M = \max_{|z|=R} |f(z)|$. Доказать, что при $n \in \mathbb{N} \cup \{0\}$ и |z| < R справедливы неравенства:

$$\left|\frac{f^{(n)}(z)}{n!}\right|\leqslant \frac{MR}{(R-|z|)^{n+1}}, \qquad |f'(z)|\leqslant \frac{MR}{R^2-|z|^2}.$$

- •8. Пусть f целая функция ($f \in Hol(\mathbb{C})$) и для всех $z \in \mathbb{C}$ выполнена оценка $|f(z)| \leqslant C(1+|z|)^p$, где C и p > 0 фиксированные константы. Доказать, что f полином степени не выше p.
- 9. Пусть функция h голоморфна в некоторой области G, а ряд $\sum_{k=1}^{\infty} |c_k|$ сходится. Доказать, что произведение $\prod_{k=1}^{\infty} (1+c_k h(z))$ сходится в G к голоморфной функции.
- **10.** Пусть $P(z)=z^n+\ldots$ полином степени n с единичным старшим коэффициентом. Доказать, что если $\max_{|z|=1}|P(z)|\leqslant 1$, то $P(z)=z^n$.











