- **1.** Пусть $J(\cdot)$ функция Жуковского. При каких $z\in \overline{\mathbb{C}}$ существует и конечен предел $\lim_{n\to\infty}J^{\{n\}}(z)$, где $J^{\{n\}}=J\circ\cdots(n$ раз $)\cdots\circ J$.
- •2. Пусть γ произвольная замкнутая кривая в \mathbb{C} , не проходящая через некоторую точку $a \in \mathbb{C}$. Пусть $\gamma = \gamma_1 + \dots + \gamma_N$ такое разбиение γ в сумму последовательных дуг, что каждая дуга $\gamma_k, \ k = 1 \dots N$, целиком содержится в некотором (открытом) круге D_k , не содержащем точку a. Обозначим через $\lambda_k, \ k = 1 \dots N$, отрезок, соединяющий начало и конец дуги γ_k , и положим $\lambda = \lambda_1 + \dots + \lambda_N$.
- а) Доказать, что для любых двух ломаных λ' и λ'' , построенных указанным выше образом верно равенство $\operatorname{ind}_a \lambda' = \operatorname{ind}_a \lambda''$.
 - б) Доказать, что если γ это кусочно-гладкая кривая, то $\operatorname{ind}_a \lambda = \int_{\gamma} \frac{dz}{z-a}.$
- **3.** Найти круги сходимости рядов $\sum_{n=0}^{\infty} C_n^k z^n$, $k \in \mathbb{Z}_+$ и $\sum_{n=0}^{\infty} \frac{n!}{n^n} (2z-i)^n$. Показать, что ряд $\sum_{n=1}^{\infty} n e^{inz}$ сходится локально равномерно в верхней полуплоскости и расходится в нижней.
- **4.** а) Проверить, что справедливо разложение $\frac{z(z+a)}{(a-z)^3} = \sum_{n=1}^{\infty} \frac{n^2 z^n}{a^{n+1}}, \, |z| < |a|, \, a \neq 0.$
- б) Разложить в ряд Тейлора в окрестности точки $z_0=0$ данные функции и найти радиус сходимости соответствующих рядов (в последнем выражении \sqrt{z} и $\ln z$ это главные значения корня и логарифма)

$$f(z) = \frac{1}{(1+z)(1+z^2)(1+z^4)}; \qquad f(z) = \frac{1}{2\sqrt{z}} \ln \frac{1+\sqrt{z}}{1-\sqrt{z}}, \quad f(0) = 1.$$

- •5. Пусть $f \in Hol(\varepsilon \mathbb{D})$, $\varepsilon > 0$, и пусть ряд $\sum_{n=0}^{\infty} f^{(n)}(0)$ сходится. Доказать, что существует функция $F \in Hol(\mathbb{C})$ такая, что F(z) = f(z) при $z \in \varepsilon \mathbb{D}$, а ряд $\sum_{n=0}^{\infty} F^{(n)}(z)$ сходится в \mathbb{C} локально равномерно. Привести пример такой функции, отличной от многочлена.
- •6. Доказать или опровергнуть следующие утверждения:
 - а) Пусть $f \in Hol(\mathbb{C})$ и для любого $z \in \mathbb{C}$ выполнено $|f(z)| \leqslant \sqrt{|z|}$. Тогда функция f постоянна.
- б) Пусть $f,g\in Hol(\mathbb{C})$ и для всех $z\in\mathbb{C}$ выполнено $|f(z)|\leqslant |g(z)|$. Тогда f=Ag, где A некоторая константа.
- 7. Вычислив и оценив интеграл $\int_{|z|=R} \frac{f(z)}{(z-a)(z-b)} dz$ при |a| < R и |b| < R доказать теорему Лиувилля: ограниченная и голоморфная функция в $\mathbb C$ является константой.
- ullet 8. Пусть G некоторая ограниченная область в \mathbb{C} , а $f_1,\ldots,f_m\in Hol(G)$. Положим

$$M := \limsup_{z \to \partial G} (|f(z_1)| + \dots + |f(z_m)|).$$

Показать, что если хотя бы одна функция f_k — не тождественная константа, то для любой точки $z \in G$ выполнено $|f_1(z)| + \cdots + |f_m(z)| < M$.

- 9. Пусть $\gamma(t)\colon [0,1] \to \mathbb{C}$ простой замкнутый кусочно-гладкий путь, внутренность носителя которого содержит точку 0. Пусть $z_0 = \gamma(0) = \gamma(1)$. Рассмотрим какую-нибудь непрерывную ветвь L(z) функции $\operatorname{Ln} z$ вдоль γ . Для функции $f \in \operatorname{Hol}(\overline{D(\gamma)})$ вычислить $\int_{\mathbb{R}^2} f'(z) L(z) dz$.
- **10.** Пусть G жорданова область с кусочно-гладкой границей Γ , пусть U некоторая окрестность Γ , а функция $\varphi \in Hol(U)$. Доказать, что следующие условия эквивалентны:
 - а) существует функция $f \in Hol(\overline{G})$ такая, что $f|_{\Gamma} = \varphi$;
 - б) для любой точки $a \notin \overline{G}$ выполнено $\int_{\Gamma} \frac{\varphi(z) \, dz}{z-a} = 0.$