Семинар 7. Симметрические многочлены, продолжение

Задача 7.1. Разбиением длины m числа n называется набор λ целых положительных чисел $(\lambda_1,\ldots,\lambda_m)$, где $\lambda_1\geqslant\lambda_2\geqslant\ldots\geqslant\lambda_m>0$ и $\lambda_1+\ldots+\lambda_m=n$.

Пусть p(n) — число разбиений числа n, соответственно p(n,m) — число разбиений числа n длины не превосходящей m. Докажите, что

(a)
$$\prod_{i=1}^{\infty} (1-t^i)^{-1} = \sum_{n=0}^{\infty} p(n)t^n;$$
 (6) $\prod_{i=1}^{m} (1-t^i)^{-1} = \sum_{n=0}^{\infty} p(n,m)t^n.$

Задача 7.2. Докажите соотношения и тождества между элементарными симметрическими функциями $e_k := \sum_{i_1 < \ldots < i_k} x_{i_1} \ldots x_{i_k}$ и степенными суммами Ньютона: $p_k := \sum_i x_i^k$:

(а) (Формулы Ньютона)

$$p_k - e_1 p_{k-1} + e_2 p_{k-2} + \ldots + (-1)^{k-1} e_{k-1} p_1 + (-1)^k k p_k = 0.$$

Детерминантные формулы

(6)
$$p_k = \begin{vmatrix} e_1 & 1 & 0 & \dots & 0 & 0 \\ 2e_2 & e_1 & 1 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ (k-1)e_{k-1} & e_{k-2} & e_{k-3} & \dots & e_1 & 1 \\ ke_k & e_{k-1} & e_{k-2} & \dots & e_2 & e_1 \end{vmatrix};$$
 (B) $k!e_k = \begin{vmatrix} p_1 & 1 & 0 & \dots & 0 & 0 \\ p_2 & p_1 & 2 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ p_{k-1} & p_{k-2} & p_{k-3} & \dots & p_1 & k-1 \\ p_k & p_{k-1} & p_{k-2} & \dots & p_2 & p_1 \end{vmatrix};$

Задача 7.3.

- (a) Дайте определение кососимметрического многочлена от n переменных и докажите, что определитель Вандермонда $\Delta(x_1,\ldots,x_n)=\prod_{i< j}(x_i-x_j)$ является таковым.
- **(б)** Докажите, что всякий кососимметрический является произведением Вандермонда и симметрического.
- (в) Пусть $f(x_1, \ldots, x_n)$ симметрический многочлен, равный 0, при $x_i = x_j$ для некоторой пары индексов i < j. Докажите, что $f(x_1, \ldots, x_n) = \Delta^2 g(x_1, \ldots, x_n)$ для некоторого симметрического многочлена $g(x_1, \ldots, x_n)$.

Определение 7.1. Для каждого набора целых неотрицательных чисел $\alpha := (\alpha_1, \dots, \alpha_n)$ определим многочлен $a_{\alpha} := \begin{vmatrix} x_1^{\alpha_1} & \dots & x_n^{\alpha_1} \\ \dots & \dots & \dots \\ x_1^{\alpha_n} & \dots & x_n^{\alpha_n} \end{vmatrix}$. В частности, если $\delta = (n-1, n-2, \dots, 1, 0)$, то a_{δ} – это определитель Вандермонда Δ .

Задача 7.4. Докажите, что **(a)** $a_{\sigma(\alpha)} = (-1)^{\sigma} a_{\alpha}$ для $\sigma \in \mathbb{S}_n$;

- (б) множество многочленов a_{α} образуют базис в векторном пространстве кососимметрических многочленов, если из этого набора выкинуть все пропорциональные и равные нулю многочлены.
- (в) множество многочленов Шура $s_{\lambda} := a_{\lambda+\delta}/a_{\delta}$, где $\lambda = (\lambda_1 \geqslant \ldots \geqslant \lambda_n)$ разбиение длины не больше n, образует базис в пространстве симметрических многочленов.
 - (г) $e_n = s_{(1,\dots,1)};$ (д) $h_n = s_{(n,0,\dots,0)}.$

Задача 7.5. Зафиксируем натуральное число n и пусть $\Xi:=\{\zeta_1,\ldots,\zeta_k\}$ – множество примитивных корней из 1 степени n.

- (a) Покажите, что $p_m(\zeta_1,\ldots,\zeta_k) \in \mathbb{Z}$ для всех m;
- (б) Покажите, что круговой многочлен $\Phi_n(x) := \prod_{i=1}^k (x-\zeta_i)$ может быть определен индуктивно

$$\Phi_n(x) := \frac{x^n - 1}{\prod_{d \mid n} \Phi_d(x)},$$

выведите отсюда, что $e_m(\zeta_1,\ldots,\zeta_k) \in \mathbb{Z}$.

- **(в)** Вычислите результант многочленов $\frac{x^n-1}{x-1}$ и $\frac{x^m-1}{x-1}$;
- $(\mathbf{r})^*$ Вычислите результант x^n-1 и кругового многочлена $\Phi_m(x)$.