Деревья и уравнения

Задача 7.1. Пусть V — конечное множество с отмеченным элементом «0». Какую долю от всех его эндоморфизмов (отображений в себя, переводящих 0 в 0) составляют нильпотентные эндоморфизмы?

Задача 7.2. Пусть $F_{n,k}$ — количество лесов на n вершинах из k корневых деревьев.

- а) Докажите биективно, что $(n-k)F_{n,k} = knF_{n,k+1}$.
- б) Найдите формулу для $F_{n,k}$ (для k=1 должна получиться формула Кэли).

Задача 7.3. а) Экспоненциальная производящая функция корневых деревьев (с пронумерованными вершинами) T(t) удовлетворяет уравнению $T = t \cdot \exp(T)$.

- б) Каков комбинаторный смысл последовательности, экспоненциальная производящая функция X(t) которой удовлетворяет уравнению $X=1+t\cdot X^d$?
- ightharpoonup Будем обозначать res $f(z)\,dz$ коэффициент при z^{-1} ряда Лорана f(z). Напомним, что если этот ряд сходится, то

$$\operatorname{res} f(z) dz = \frac{1}{2\pi i} \oint_{|z| = \varepsilon} f(z) dz.$$

Для вычисления этого коэффициента можно применять формулы замены переменной и интегрирования по частям. В частности, если y = xR(y), то

$$[x^n]y = \operatorname{res} \frac{y}{x^{n+1}} \, dx = -\frac{1}{n} \operatorname{res} y \, d(x^{-n}) = \frac{1}{n} \operatorname{res} x^{-n} \, dy = \frac{1}{n} \operatorname{res} \frac{R^n(y)}{y^n} \, dy = \frac{1}{n} [y^{n-1}](R^n).$$

Задача 7.4. Докажите при помощи этой формулы обращения Лагранжа, что количество корневых деревьев на n (пронумерованных) вершинах есть n^{n-1} .

Задача 7.5. Разложим корень уравнения $x^d - x - a$ в ряд по a (при $|a| \ll 1$).

- а) Объясните комбинаторный смысл коэффициентов этого разложения.
- б) Найдите для них явную формулу в духе формулы для чисел Каталана.
- **Задача 7.6*.** Пусть V конечномерное векторное пространство над конечным полем. Какую долю от всех его эндоморфизмов (линейных отображений в себя) составляют нильпотентные эндоморфизмы?